Abstract
Recent results demonstrate techniques for fully quantitative, statistical inference of the dynamics of individual neurons under the Hodgkin–Huxley framework of voltage-gated conductances. Using a variational approximation, this approach has been successfully applied to simulated data from model neurons. Here, we use this method to analyze a population of real neurons recorded in a slice preparation of the zebra finch forebrain nucleus HVC. Our results demonstrate that using only 1,500 ms of voltage recorded while injecting a complex current waveform, we can estimate the values of 12 state variables and 72 parameters in a dynamical model, such that the model accurately predicts the responses of the neuron to novel injected currents. A less complex model produced consistently worse predictions, indicating that the additional currents contribute significantly to the dynamics of these neurons. Preliminary results indicate some differences in the channel complement of the models for different classes of HVC neurons, which accords with expectations from the biology. Whereas the model for each cell is incomplete (representing only the somatic compartment, and likely to be missing classes of channels that the real neurons possess), our approach opens the possibility to investigate in modeling the plausibility of additional classes of channels the cell might possess, thus improving the models over time. These results provide an important foundational basis for building biologically realistic network models, such as the one in HVC that contributes to the process of song production and developmental vocal learning in songbirds.
Similar content being viewed by others
References
Abarbanel HDI (2009) Effective actions for statistical data assimilation. Phys Lett A 373:4044–4048
Abarbanel HDI (2013) Predicting the future: completing models of complex systems. Springer, New York
Abarbanel HDI, Creveling D, Jeanne J (2008) Estimation of parameters in nonlinear systems using balanced synchronization. Phys Rev E 77(016):208
Abarbanel HDI, Creveling DR, Farsian R, Kostuk M (2009) Dynamical state and parameter estimation. SIAM J Appl Dyn Syst 8(4):1341–1381
Abarbanel HDI, Kostuk M, Whartenby W (2010) Data assimilation with regularized nonlinear instabilities. Q J Meteor Soc 136(648):769–783
Abarbanel HDI, Bryant P, Gill PE, Kostuk M, Rofeh J, Singer Z, Toth B, Wong E (2011) Dynamical parameter and state estimation in neuron models. In: Glanzman D, Ding M (eds) The dynamic brain: an exploration of neuronal variability and its functional significance, chap 8. Oxford University Press, New York
Achard P, Schutter ED (2006) Complex parameter landscape for a complex neuron model. PLoS Comput Biol 2(7):e94. doi:10.1371/journal.pcbi.0020094
Amador A, Perl YS, Mindlin GB, Margoliash D (2013) Elemental gesture dynamics are encoded by song premotor cortical neurons. Nature 495(7439):59–64. doi:10.1038/nature11967
Ayali A, Lange AB (2010) Rhythmic behaviour and pattern-generating circuits in the locust: key concepts and recent updates. J Insect Physiol 56(8):834–843. doi:10.1016/j.jinsphys.2010.03.015
Baldi P, Vanier MC, Bower JM (1998) On the use of Bayesian methods for evaluating compartmental neural models. J Comput Neurosci 5:285–314
Bean BP (2007a) The action potential in mammalian central neurons. Nat Rev Neurosci 8(6):451–465. doi:10.1038/nrn2148
Bean BP (2007b) The action potential in mammalian central neurons. Nat Rev Neurosci 8(6):451–465. doi:10.1038/nrn2148
Briggman KL, Abarbanel HDI, Kristan WB (2005) Optical imaging of neuronal populations during decision-making. Science 307:896–901
Buhry L, Pace M, Saighi S (2012) Global parameter estimation of an Hodgkin–Huxley formalism using membrane voltage recordings: application to neuro-mimetic analog integrated circuits. Neurocomputing 81:75–85. doi:10.1016/j.neucom.2011.11.002
Cerda O, Trimmer JS (2010) Analysis and functional implications of phosphorylation of neuronal voltage-gated potassium channels. Neurosci Lett 486(2):60–7. doi:10.1016/j.neulet.2010.06.064
Clewley R (2011) Inferring and quantifying the role of an intrinsic current in a mechanism for a half-center bursting oscillation: a dominant scale and hybrid dynamical systems analysis. J Biol Phys 37(3):285–306
Daou A, Ross M, Johnson F, Hyson RL, Bertram R (2013) Electrophysiological characterization and computational models of HVC neurons in the zebra finch. J Neurophysiol. doi:10.1152/jn.00162.2013
Druckmann S, Banitt Y, Gidon A, Schürmann F, Markram H, Segev I (2007) A novel multiple objective optimization framework for constraining conductance-based neuron models by experimental data. Front Neurosci 1(1):7–18. doi:10.3389/neuro.01.1.1.001.2007
Druckmann S, Berger TK, Hill S, Schürmann F, Markram H, Segev I (2008) Evaluating automated parameter constraining procedures of neuron models by experimental and surrogate data. Biol Cybern 99(4–5):371–9. doi:10.1007/s00422-008-0269-2
Dutar P, Vu HM, Perkel DJ (1998) Multiple cell types distinguished by physiological, pharmacological, and anatomic properties in nucleus HVc of the adult zebra finch. J Neurophysiol 80(4):1828 –1838
Fortune ES, Margoliash D (1995) Parallel pathways and convergence onto HVc and adjacent neostriatum of adult zebra finches (Taeniopygia guttata). J Comp Neurol 360(3):413–441. doi:10.1002/cne.903600305
Foster WR, Ungar LH, Schwaber JS (1993) Significance of conductances in Hodgkin–Huxley models. J Neurophysiol 70(6):2502–2518
Geit WV, Schutter ED, Achard P (2008) Automated neuron model optimization techniques: a review. Biol Cybern 99:241–251. doi:10.1007/s00422-008-0257-6
Gill PE, Murray W, Wright MH (1981) Practical optimization. Academic Press, London
Gleeson P, Crook S, Cannon RC, Hines ML, Billings GO, Farinella M, Morse TM, Davison AP, Ray S, Bhalla US, Barnes SR, Dimitrova YD, Silver RA (2010) NeuroML: a language for describing data driven models of neurons and networks with a high degree of biological detail. PLoS Comput Biol 6(6):e1000,815. doi:10.1371/journal.pcbi.1000815
Golowasch J, Goldman MS, Abbott LF, Marder E (2002) Failure of averaging in the construction of a conductance-based neuron model. J Neurophysiol 87(2):1129–31
Günay C, Edgerton JR, Jaeger D (2008) Channel density distributions explain spiking variability in the globus pallidus: a combined physiology and computer simulation database approach. J Neurosci 28(30):7476–7491. doi:10.1523/JNEUROSCI.4198-07.2008
Hahnloser RHR, Kozhevnikov AA, Fee MS (2002) An ultra-sparse code underlies the generation of neural sequences in a songbird. Nature 419:65–70
Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1):97
Hendrickson EB, Edgerton JR, Jaeger D (2011) The use of automated parameter searches to improve ion channel kinetics for neural modeling. J Comput Neurosci 31(2):329–346. doi:10.1007/s10827-010-0312-x
Herz AVM, Gollisch T, Machens CK, Jaeger D (2006) Modeling single-neuron dynamics and computations: a balance of detail and abstraction. Science 314(5796):80–85. doi:10.1126/science.1127240
Hines ML, Carnevale NT (1997) The NEURON simulation environment. Neural Comput 9(6):1179–1209
Hobbs KH, Hooper SL (2008) Using complicated, wide dynamic range driving to develop models of single neurons in single recording sessions. J Neurophysiol 99(4):1871–83. doi:10.1152/jn.00032.2008
Hochberg D, Molina-París C, Pérez-Mercader J, Visser M (1999) Effective action of stochastic partial differential equations. Phys Rev E 60(6):6343–6360
Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol (Lond) 117(4):500–44
Huijberts HJC, Lilge T, Nijmeijer H (2001) Nonlinear discrete-time synchronization via extended observers. Int J Bifurcat Chaos 11(7):1997–2006
Huys QJM, Paninski L (2009) Smoothing of, and parameter estimation from, noisy biophysical recordings. PLoS Comput Biol 5(5):e1000,379. doi:10.1371/journal.pcbi.1000379
Huys QJM, Ahrens MB, Paninski L (2006) Efficient estimation of detailed single-neuron models. J Neurophysiol 96(2):872–90. doi:10.1152/jn.00079.2006
Jin D, Ramazanoğlu F, Seung H (2007) Intrinsic bursting enhances the robustness of a neural network model of sequence generation by avian brain area HVC. J Comput Neurosci 23(3):283–299
Jin L, Han Z, Platisa J, Wooltorton JR, Cohen LB, Pieribone VA (2012) Single action potentials and subthreshold electrical events imaged in neurons with a fluorescent protein voltage probe. Neuron 75(5):779–785. doi:10.1016/j.neuron.2012.06.040
Johnston J, Forsythe ID, Kopp-Scheinpflug C (2010) Going native: voltage-gated potassium channels controlling neuronal excitability. J Physiol (Lond) 588(Pt 17):3187–3200. doi:10.1113/jphysiol.2010.191973
Jolivet R, Lewis TJ, Gerstner W (2004) Generalized integrate-and-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy. J Neurophysiol 92(2):959–76. doi:10.1152/jn.00190.2004
Jolivet R, Kobayashi R, Rauch A, Naud R, Shinomoto S, Gerstner W (2008a) A benchmark test for a quantitative assessment of simple neuron models. J Neurosci Methods 169(2):417–424. doi:10.1016/j.jneumeth.2007.11.006
Jolivet R, Schürmann F, Berger TK, Naud R, Gerstner W, Roth A (2008b) The quantitative single-neuron modeling competition. Biol Cybern 99(4–5):417–426. doi:10.1007/s00422-008-0261-x
Jouvet B, Phythian R (1979) Quantum aspects of classical and statistical fields. Phys Rev A 19(3):1350–1355
Kew JNC, Davies CH (eds) (2010) Ion channels: from structure to function. Oxford University Press, New York
Kobayashi R, Tsubo Y, Shinomoto S (2009) Made-to-order spiking neuron model equipped with a multi-timescale adaptive threshold. Front Comput Neurosci 3:9. doi:10.3389/neuro.10.009.2009
Kole MH, Hallermann S, Stuart GJ (2006) Single Ih channels in pyramidal neuron dendrites: properties, distribution, and impact on action potential output. J Neurosci 26(6):1677–1687. doi:10.1523/JNEUROSCI.3664-05.2006
Kostuk M, Toth BA, Meliza CD, Margoliash D, Abarbanel HDI (2012) Dynamical estimation of neuron and network properties II: path integral monte carlo methods. Biol Cybern 106(3):155–167. doi:10.1007/s00422-012-0487-5
Kubota M, Saito N (1991) Sodium- and calcium-dependent conductances of neurones in the zebra finch hyperstriatum ventrale pars caudale in vitro. J Physiol (Lond) 440:131–142
Kubota M, Taniguchi I (1998) Electrophysiological characteristics of classes of neuron in the HVc of the zebra finch. J Neurophysiol 80(2):914–923
Lepora NF, Overton PG, Gurney K (2011) Efficient fitting of conductance-based model neurons from somatic current clamp. J Comput Neurosci. doi:10.1007/s10827-011-0331-2
Long MA, Jin DZ, Fee MS (2010) Support for a synaptic chain model of neuronal sequence generation. Nature 468(7322):394–9. doi:10.1038/nature09514
Marder E, Bucher D (2007) Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs. Annu Rev Physiol 69:291–316. doi:10.1146/annurev.physiol.69.031905.161516
Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21(6):1087–1092
Mooney R (2000) Different subthreshold mechanisms underlie song selectivity in identified HVc neurons of the zebra finch. J Neurosci 20(14):5420–5436
Mooney R, Prather JF (2005) The HVC microcircuit: the synaptic basis for interactions between song motor and vocal plasticity pathways. J Neurosci 25(8):1952–1964. doi:10.1523/JNEUROSCI.3726-04.2005
Nixdorf B, Davis S, DeVoogd T (1989) Morphology of Golgi-impregnated neurons in hyperstriatum ventralis, pars caudalis in adult male and female canaries. J Comp Neurol 284(3):337–349. doi:10.1002/cne.902840302
Olypher AV, Calabrese RL (2007) Using constraints on neuronal activity to reveal compensatory changes in neuronal parameters. J Neurophysiol 98(6):3749–58. doi:10.1152/jn.00842.2007
Pospischil M, Toledo-Rodriguez M, Monier C, Piwkowska Z, Bal T, Frégnac Y, Markram H, Destexhe A (2008) Minimal Hodgkin–Huxley type models for different classes of cortical and thalamic neurons. Biol Cybern 99(4–5):427–441. doi:10.1007/s00422-008-0263-8
Prinz AA, Billimoria CP, Marder E (2003) Alternative to hand-tuning conductance-based models: construction and analysis of databases of model neurons. J Neurophysiol 90(6):3998–4015. doi:10.1152/jn.00641.2003
Prinz AA, Bucher DEM (2004) Similar network activity from disparate circuit parameters. Nat Neurosci 7:1345–1352
Ransdell J, Nair S, Schulz D (2013) Neurons within the same network independently achieve conserved output by differentially balancing variable conductance magnitudes. J Neurosci 33(24):9950–9956. doi:10.1523/JNEUROSCI.1095-13.2013
Reid MS, Brown EA, DeWeerth SP (2007) A parameter-space search algorithm tested on a Hodgkin–Huxley model. Biol Cybern 96(6):625–634. doi:10.1007/s00422-007-0156-2
Restrepo JM (2008) A path integral method for data assimilation. Physica D 237:14–27
Roberts TF, Klein ME, Kubke MF, Wild JM, Mooney R (2008) Telencephalic neurons monosynaptically link brainstem and forebrain premotor networks necessary for song. J Neurosci 28(13):3479–3489. doi:10.1523/JNEUROSCI.0177-08.2008
Sarkar AX, Christini DJ, Sobie EA (2012) Exploiting mathematical models to illuminate electrophysiological variability between individuals. J Physiol (Lond) 590(Pt 11):2555–67. doi:10.1113/jphysiol.2011.223313
Schenk O, Bollhoefer M, Gärtner K (2008) On large-scale diagonalization techniques for the Anderson model of localization. SIAM Rev 50:91–112
Schulz DJ, Goaillard JM, Marder E (2006) Variable channel expression in identified single and electrically coupled neurons in different animals. Nat Neurosci 9(3):356–362. doi:10.1038/nn1639
Shea SD, Koch H, Baleckaitis D, Ramirez JM, Margoliash D (2010) Neuron-specific cholinergic modulation of a forebrain song control nucleus. J Neurophysiol 103(2):733–745. doi:10.1152/jn.00803.2009
Swensen AM, Bean BP (2005) Robustness of burst firing in dissociated Purkinje neurons with acute or long-term reductions in sodium conductance. J Neurosci 25(14):3509–20. doi:10.1523/JNEUROSCI.3929-04.2005
Szendro IG, Rodríguez MA, López JM (2009) On the problem of data assimilation by means of synchronization. J Geophys Rev. doi:10.1029/2009JD012411
Tomaiuolo M, Bertram R, Leng G, Tabak J (2012) Models of electrical activity: calibration and prediction testing on the same cell. Biophys J 103(9):2021–2032. doi:10.1016/j.bpj.2012.09.034
Toth BA, Kostuk M, Meliza CD, Margoliash D, Abarbanel HDI (2011) Dynamical estimation of neuron and network properties I: variational methods. Biol Cybern 105:217–237. doi:10.1007/s00422-011-0459-1
Trimmer J, Rhodes K (2004) Localization of voltage-gated ion channels in mammalian brain. Annu Rev Physiol 66(1):477–519. doi:10.1146/annurev.physiol.66.032102.113328
Vanier MC, Bower JM (1999) A comparative survey of automated parameter-search methods for compartmental neural models. J Comput Neurosci 7(2):149–171. doi:10.1023/A:1008972005316
Vavoulis DV, Straub VA, Aston JAD, Feng J (2012) A self-organizing state-space-model approach for parameter estimation in Hodgkin–Huxley-type models of single neurons. PLoS Comput Biol. doi:10.1371/journal.pcbi.1002401
Wächter A (2002) An interior point algorithm for large-scale nonlinear optimization with applications in process engineering. Phd thesis, Carnegie Mellon University
Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE T Evolut Comput 1(1):67–82
Acknowledgments
B. Toth contributed software used to generate IPOPT code. We acknowledge many productive conversations with P. E. Gill on numerical optimization, and we thank A. Daou for conversations about neuron classes in HVC. Support from the US Department of Energy (Grant DE-SC0002349 ) and the National Science Foundation (Grants IOS-0905076, IOS-0905030, and PHY-0961153) is gratefully acknowledged. Partial support from the NSF sponsored Center for Theoretical Biological Physics is also appreciated.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Meliza, C.D., Kostuk, M., Huang, H. et al. Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108, 495–516 (2014). https://doi.org/10.1007/s00422-014-0615-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00422-014-0615-5