[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Orientation enhancement in early visual processing can explain time course of brightness contrast and White’s illusion

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Dynamics of orientation tuning in V1 indicates that computational model of V1 should not only comprise of bank of static spatially oriented filters but also include the contribution for dynamical response facilitation or suppression along orientation. Time evolution of orientation response in V1 can emerge due to time- dependent excitation and lateral inhibition in the orientation domain. Lateral inhibition in the orientation domain suggests that Ernst Mach’s proposition can be applied for the enhancement of initial orientation distribution that is generated due to interaction of visual stimulus with spatially oriented filters and subcortical temporal filter. Oriented spatial filtering that appears much early (\(<\)70 ms) in the sequence of visual information processing can account for many of the brightness illusions observed at steady state. It is therefore expected that time evolution of orientation response might be reflecting in the brightness percept over time. Our numerical study suggests that only spatio-temporal filtering at early phase can explain experimentally observed temporal dynamics of brightness contrast illusion. But, enhancement of orientation response at early phase of visual processing is the key mechanism that can guide visual system to predict the brightness by “Max-rule” or “Winner Takes All” (WTA) estimation and thus producing White’s illusions at any exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. Signal of luminance contrast appeared at the edges by a faster mechanism (spatial filtering), travels with a finite speed to influence the brightness of a uniform region in its neighborhood.

  2. Oriented Difference of Gaussian

  3. Frequency-specific Locally normalized ODoG

References

  • Albrecht DG, Geisler WS, Frazor RA, Crane AM (2002) Visual cortex neurons of monkeys and cats: temporal dynamics of the contrast response function. J Neurophysiol 88:888–913

    PubMed  Google Scholar 

  • Ben-Yishai R, Bar Or RL (1995) Theory of orientation tuning in visual cortex. Proc Natl Acad Sci USA 92:3844–3848

    Article  PubMed  CAS  Google Scholar 

  • Baldassi S, Verghese P (2002) Comparing integration rules in visual search. J Vis 2:559–570

    Article  PubMed  Google Scholar 

  • Baldassi S, Burr DC (2004) Pop-out of targets modulated in luminance or colour: the effect of intrinsic and extrinsic uncertainty. Vis Res 44:1227–1233

    Article  PubMed  Google Scholar 

  • Baldassi S, Megna N, Burr DC (2006) Visual clutter causes high-magnitude errors. PLoS Biol 4:e56

    Article  PubMed  Google Scholar 

  • Beaudot WHA, Mullen K (2006) Orientation discrimination in human vision: psychophysics and modeling. Vis Res 46:2646

    Article  Google Scholar 

  • Blakemore C, Carpenter RHS, Georgeson MA (1970) Lateral inhibition between orientation detectors in human visual system. Nature 228:37–39

    Article  PubMed  CAS  Google Scholar 

  • Blakeslee B, McCourt ME (1999) A multiscale spatial filtering account of the white effect, simultaneous brightness contrast and grating induction. Vis Res 39:4361–4377

    Article  PubMed  CAS  Google Scholar 

  • Blakeslee B, McCourt ME (2001) A multiscale spatial filtering account of the WertheimerBenary effect and the corrugated Mondrian. Vis Res 41:2487–2502

    Article  PubMed  CAS  Google Scholar 

  • Blakeslee B, McCourt ME (2004) A unified theory of brightness contrast and assimilation incorporating oriented multiscale spatial filtering and contrast normalization. Vis Res 44:2483–2503

    Article  PubMed  Google Scholar 

  • Blakeslee B, McCourt ME (2005) Oriented multiscale spatial filtering and contrast normalization: a parsimonious model of brightness induction in a continuum of stimuli including White, Howe and simultaneous brightness contrast. Vis Res 45:607–615

    Article  PubMed  Google Scholar 

  • Blakeslee B, McCourt ME (2008) Nearly instantaneous brightness induction. J Vis 8(2):15, 1–8

    Google Scholar 

  • Blakeslee B, McCourt ME (2009) Spatial filtering versus anchoring accounts of brightness/lightness perception in staircase and simultaneous brightness/lightness contrast stimuli. J Vis 9(3):22, 1–17

    Google Scholar 

  • Bullier J (2001) Integrated model of visual processing. Brain Res Rev 36:96107

    Article  Google Scholar 

  • Burr DC, Wijesundra SA (1991) Orientation discrimination depends on spatial frequency. Vis Res 31:1449–1452

    Article  PubMed  CAS  Google Scholar 

  • Carandini M, Heeger DJ (1994) Summation and division by neurons in visual cortex. Science 64:1333–1336

    Article  Google Scholar 

  • Carandini M, Heeger DJ, Movshon JA (1997) Linearity and normalization in simple cells of macaque primary visual cortex. J Neurosci 17:8621–8644

    PubMed  CAS  Google Scholar 

  • Carandini M, Ringach DL (1997) Predictions of a recurrent model of orientation selectivity. Vis Research 37:3061–3071

    Article  CAS  Google Scholar 

  • Chance FS, Nelson SB, Abbott LF (1999) Complex cells as cortically amplified simple cells. Nature Neurosci 2:277–282

    Article  PubMed  CAS  Google Scholar 

  • De Valois RL, Webster MA, De Valois KK, Lingelbach B (1986) Temporal limits of brightness induction and mechanisms of brightness perception. Vis Res 26:887–897

    Article  PubMed  Google Scholar 

  • Dragoi V, Sharma J, Miller EK, Sur M (2002) Dynamics of neuronal sensitivity in visual cortex and local feature discrimination. Nat Neurosci 5:883–891

    Article  PubMed  CAS  Google Scholar 

  • Dragoi V, Sharma J, Sur M (2000) Adaptation-induced plasticity of orientation tuning in adult visual cortex. Neuron 28:287–298

    Article  PubMed  CAS  Google Scholar 

  • Foxe JJ, Simpson GV (2002) Timecourse of activation flow from V1 to frontal cortex in humans: a framework for defining “early” visual processing. Exp Brain Res 142:139–150

    Article  PubMed  Google Scholar 

  • Foxe JJ, Strugstad EC, Sehatpour P, Molholm S, Pasieka W, Schroeder CE, McCourt ME (2008) Parvocellular and Magnocellular contributions to the initial generators of the visual evoked potential: high-density electrical mapping of the C1” component. Brain Topogr 12:10–21

    Google Scholar 

  • Georgeson MA, Sullivan GD (1975) Contrast constancy: deblurring in human vision by spatial frequency channels. J Physiol (London) 252:627–656

    CAS  Google Scholar 

  • Gheri C, Baldassi S (2008) Non-linear integration of crowded orientation signals. Vis Res 48:2352–2358

    Article  PubMed  Google Scholar 

  • Ghosh K, Sarkar S, Bhaumik K (2007) Understanding image structure from a new multi-scale representation of higher order derivative filters. Image Vis Comput 25:1228–1238

    Article  Google Scholar 

  • Ma SD, Li B (1998) Derivative computation by multiscale filters. Image Vis Comput 16:43–53

    Article  Google Scholar 

  • Mach E (1868) On the physiological effect of spatially distributed light stimuli. Trans In Ratliff F (ed) (1965) Mach bands: quantitative studies on neural network in the retina. Holden-Day, San Francisco 253–332

  • Malone BJ, Kumar VR, Ringach DL (2007) Dynamics of receptive field size in primary visual cortex. J Neurophysiol 97:407–414

    Article  PubMed  Google Scholar 

  • Marr D, Poggio T, Hildreth E (1980) Smallest channel in early human vision. J Opt Soc Am 70:868–870

    Article  PubMed  CAS  Google Scholar 

  • McCourt ME, Foxe JJ (2004) Brightening prospects for early cortical coding of perceived luminance: a high-density electrical mapping study. Neuroreport 15:49–56

    Article  PubMed  Google Scholar 

  • Parker DM, Lishman JR, Hughes J (1992) Temporal integration of spatially filtered visual images. Perception 21:147–160

    Article  PubMed  CAS  Google Scholar 

  • Petrov Y, Carandini M, McKee S (2005) Two distinct mechanism of suppression in human vision. Journal Nurosci 25(38):8704–8707

    Article  CAS  Google Scholar 

  • Pugh MC, Ringach DL, Shapley R, Shelley MJ (2000) Computational modeling of orientation tuning dynamics in monkey primary visual cortex. J Comput Neurosc 8:143–159

    Article  CAS  Google Scholar 

  • Ringach DL (1998) Tuning of orientation detectors in human vision. Vis Res 38:963–972

    Article  PubMed  CAS  Google Scholar 

  • Ringach DL, Hawken MJ, Shapley R (1997) Dynamics of orientation tuning in macaque primary visual cortex. Nature 387:281–284

    Article  PubMed  CAS  Google Scholar 

  • Ringach DL, Hawken MJ, Shapley R (2003) Dynamics of orientation tuning in macaque v1: the role of global and tuned suppression. J Neurophysiol 90:342–352

    Article  PubMed  Google Scholar 

  • Robinson AE, de Sa VR (2008) Brief presentations reveal the temporal dynamics of brightness induction and white’s illusion. Vis Res 48:2370–2381

    Article  PubMed  Google Scholar 

  • Robinson AE, Hammon PS, de Sa VR (2007) Explaining brightness illusions using spatial filtering and local response normalization. Vis Res 47:1631–1644

    Google Scholar 

  • Roeber U, Wong YME, Freeman WA (2008) Cross-orientation interactions in human vision. J Vis 15:1–11

    Google Scholar 

  • Rossi AF, Paradiso MA (1996) Temporal limits of brightness induction and mechanisms of brightness perception. Vis Res 36:1391–1398

    Article  PubMed  CAS  Google Scholar 

  • Schmolesky MT, Wang Y, Hanes DP, Thompson KG, Leutgeb S, Schall JD, Leventhal AG (1998) Signal timing across the Macaque visual system. J Neurophysiol 79:3272–3278

    PubMed  CAS  Google Scholar 

  • Somers DC, Nelson SB, Sur M (1995) An emergent model of orientation selectivity in cat visual cortical simple cells. J Neurosci 15: 5448–5465

    PubMed  CAS  Google Scholar 

  • Teich AF, Qian N (2003) Learning and adaptation in a recurrent model of V1 orientation selectivity. J Neurophysiol 89:2086–2100

    Article  PubMed  Google Scholar 

  • Teich AF, Qian N (2006) Comparison among some models of orientation selectivity. J Neurophysiol 96:404–419

    Article  PubMed  Google Scholar 

  • Webb BS, Ledgeway T, McGraw PV (2010) Relating spatial and temporal orientation pooling to population decoding solutions in human vision. Vis Res 50:2274–2283

    Article  PubMed  Google Scholar 

  • White M (1979) A new effect of pattern on perceived lightness. Perception 8:413–416

    Article  PubMed  CAS  Google Scholar 

  • Xing J, Heeger DJ (2001) Measurement and modeling of center-surround suppression and enhancement. Vis Res 41:571–583

    Article  PubMed  CAS  Google Scholar 

  • Yoshio O, Shoichi O, Yoshikazu Y, Keisuke T, Yoshimichi E (2002) Surround suppression in the human visual cortex: an analysis using magnetoencephalography. Vis Res 42:1825–1835

    Article  Google Scholar 

  • Zenger-Landolt B, Heeger DJ (2003) Response suppression in V1 agrees with psychophysics of surround masking. J Neurosci 23:6884–6893

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to Mark E McCourt, Shaibal Saha, and Alan E Robinson for useful discussions and to the anonymous reviewers for their valuable comments and suggestions to improve the manuscript. Authors also wish to thank Supratic Chakraborty for helping in editing language of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhajit Karmakar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karmakar, S., Sarkar, S. Orientation enhancement in early visual processing can explain time course of brightness contrast and White’s illusion . Biol Cybern 107, 337–354 (2013). https://doi.org/10.1007/s00422-013-0553-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-013-0553-7

Keywords

Navigation