[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Electric imaging through active electrolocation: implication for the analysis of complex scenes

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The electric sense of mormyrids is often regarded as an adaptation to conditions unfavourable for vision and in these fish it has become the dominant sense for active orientation and communication tasks. With this sense, fish can detect and distinguish the electrical properties of the close environment, measure distance, perceive the 3-D shape of objects and discriminate objects according to distance or size and shape, irrespective of conductivity, thus showing a degree of abstraction regarding the interpretation of sensory stimuli. The physical properties of images projected on the sensory surface by the fish’s own discharge reveal a “Mexican hat” opposing centre-surround profile. It is likely that computation of the image amplitude to slope ratio is used to measure distance, while peak width and slope give measures of shape and contrast. Modelling has been used to explore how the images of multiple objects superimpose in a complex manner. While electric images are by nature distributed, or ‘blurred” behavioural strategies orienting sensory surfaces and the neural architecture of sensory processing networks both contribute to resolving potential ambiguities. Rostral amplification is produced by current funnelling in the head and chin appendage regions, where high density electroreceptor distributions constitute foveal regions. Central magnification of electroreceptive pathways from these regions particularly favours the detection of capacitive properties intrinsic to potential living prey. Swimming movements alter the amplitude and contrast of pre-receptor object-images but image modulation is normalised by central gain-control mechanisms that maintain excitatory and inhibitory balance, removing the contrast-ambiguity introduced by self-motion in much the same way that contrast gain-control is achieved in vision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adelman TL, Bialek W, Olberg RM (2003) The information content of receptive fields. Neuron 40: 823–33

    Article  CAS  PubMed  Google Scholar 

  • Assad C (1997) Electric field maps and boundary element simulations of electrolocation in weakly electric fish. Electrical Engineering, California Institute of Technology, Pasadena

    Google Scholar 

  • Azzopardi P, Cowey A (1993) Preferential representation of the fovea in the primary visual cortex. Nature 361: 719–21

    Article  CAS  PubMed  Google Scholar 

  • Babineau D, Longtin A, Lewis JE (2006) Modelling the field of weakly electric fish. J Exp Biol 209: 3636–651

    Article  PubMed  Google Scholar 

  • Babineau D, Lewis JE, Longtin A (2007) Spatial acuity and prey detection in weakly electric fish. PLoS Comput Biol 3: e38

    Article  PubMed  Google Scholar 

  • Bacelo J (2007) Sensory processing in the Electrosensory Lobe of the weakly electric fish Gnathonemus petersii. THESE DE DOCTORAT DE L’UNIVERSITE PARIS 6, Pierre et Marie Curie. Paris 6, Paris, p 167

  • Bacelo J, Grant K (2001) Electrosensory and trigeminal innervation of the Schnauzenorgan in Gnathonemus petersii. In: 6th international congress of neuroethology, Bonn/Germany, p 225

  • Baldi P, Heiligenberg W (1988) How sensory maps could enhance resolution through ordered arrangements of broadly tuned receivers. Un Ensemble de courbes qui font monter une droite. Biol Cybern 59: 313–18

    CAS  Google Scholar 

  • Bastian J (1975) Receptive fields of cerebellar cells receiving exteroceptive input in a ymnotid fish. J Neurophysiol 38: 285–00

    CAS  PubMed  Google Scholar 

  • Bastian J (1981a) Electrolocation: I. How the electroreceptors of Apteronotus albifrons code for moving objects and other electric stimuli. J Comp Physiol A 144: 465–79

    Article  Google Scholar 

  • Bastian J (1981b) Electrolocation: II. The effects of moving objects and other electric stimuli on the activities of two categories of posterior lateral line lobe cells in Apteronotus albifrons. J Comp Physiol A 144: 481–94

    Article  Google Scholar 

  • Bastian J (1995) Pyramidal-cell plasticity in weakly electric fish: a mechanism for attenuating responses to reafferent electrosensory inputs. J Comp Physiol A 176: 63–3

    Article  CAS  PubMed  Google Scholar 

  • Bastian J, Chacron MJ, Maler L (2002) Receptive field organization determines pyramidal cell stimulus-encoding capability and spatial stimulus selectivity. J Neurosci 22: 4577–590

    CAS  PubMed  Google Scholar 

  • Bell CC (1981) An efference copy which is modified by reafferent input. Science 214(4519): 450–53

    Article  CAS  PubMed  Google Scholar 

  • Bell CC (1990) Mormyromast electroreceptor organs and their afferent fibers in mormyrid fish. II. Intra-axonal recordings show initial stages of central processing. J Neurophysiol 63: 303–18

    CAS  PubMed  Google Scholar 

  • Bell CC (2001) Memory-based expectations in electrosensory systems. Curr Opin Neurobiol 11: 481–87

    Article  CAS  PubMed  Google Scholar 

  • Bell CC, Zakon H, Finger TE (1989) Mormyromast electroreceptor organs and their afferent fibers in mormyrid fish: I. Morphology. J Comp Neurol 286: 391–07

    Article  CAS  PubMed  Google Scholar 

  • Bell CC, Bodznick D, Montgomery JC, Bastian J (1997a) The generation and subtraction of sensory expectations within cerebellum-like structures. Brain Behav Evol 50: 17–1

    Article  PubMed  Google Scholar 

  • Bell CC, Caputi A, Grant K (1997b) Physiology and plasticity of morphologically identified cells in the mormyrid electrosensory lobe. J Neurosci 17: 6409–423

    CAS  PubMed  Google Scholar 

  • Budelli R, Caputi AA (2000) The electric image in weakly electric fish: perception of objects of complex impedance. J Exp Biol 203(Pt 3): 481–92

    CAS  PubMed  Google Scholar 

  • Caputi AA (2004) Contributions of electric fish to the understanding of sensory processing by reafferent systems. J Physiol Paris 98: 81–7

    Article  PubMed  Google Scholar 

  • Caputi AA, Budelli R (2006) Peripheral electrosensory imaging by weakly electric fish. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 192(6): 587–00

    Article  CAS  PubMed  Google Scholar 

  • Caputi AA, Budelli R, Grant K, Bell CC (1998) The electric image in weakly electric fish: physical images of resistive objects in Gnathonemus petersii. J Exp Biol 201(Pt 14): 2115–128

    CAS  PubMed  Google Scholar 

  • Catania KC (1999) A nose that looks like a hand and acts like an eye: the unusual mechanosensory system of the star-nosed mole. J Comp Physiol A 185: 367–72

    Article  CAS  PubMed  Google Scholar 

  • Catania KC, Kaas JH (1997) Somatosensory fovea in the star-nosed mole: behavioral use of the star in relation to innervation patterns and cortical representation. J Comp Neurol 387: 215–33

    Article  CAS  PubMed  Google Scholar 

  • Castelló ME, Caputi AA, Trujillo-Cenóz O (1998) Structural and functional aspects of the fast electrosensory pathway in the electrosensory lateral line lobe of the pulse fish Gymnotus carapo. J Comp Neurol 401: 549–63

    Article  PubMed  Google Scholar 

  • Castelló ME, Aguilera PA, Trujillo-Cenoz O, Caputi AA (2000) Electroreception in Gymnotus carapo: Pre-receptional mechanisms and distribution of electroreceptor types. J Exp Biol 203: 3279–287

    PubMed  Google Scholar 

  • Chacron MJ, Doiron B, Maler L, Longtin A, Bastian J (2003) Non-classical receptive field mediates switch in a sensory neuron’s frequency tuning. Nature 423: 77–1

    Article  CAS  PubMed  Google Scholar 

  • Chen L, House JL, Krahe R, Nelson ME (2005) Modeling signal and background components of electrosensory scenes. J comp Physiol A 191: 331–45

    Article  Google Scholar 

  • Ciali S, Gordon J, Moller P (1997) Spectral sensitivity of the weakly discharging electric fish Gnathonemus petersii using its electric organ discharges as the response measure. J Fish Biology 50: 1074–087

    Google Scholar 

  • Ćurčić B, van Netten SM (2006) Source location encoding in the fish lateral line canal. J Exp Biol 209: 1548–559

    Article  Google Scholar 

  • Douglas RH, Eva J, Guttridge N (1988) Size constancy in goldfish (Carassius auratus). Behav Brain Res 30: 37–2

    Article  CAS  PubMed  Google Scholar 

  • Egelhaaf M, Boddeker N, Kern R, Kretzberg J, Lindemann JP, Warzecha AK (2003) Visually guided orientation in flies: case studies in computational neuroethology. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 189: 401–09

    Article  CAS  PubMed  Google Scholar 

  • Gomez L, Budelli R, Grant K, Caputi AA (2004) Pre-receptor profile of sensory images and primary afferent neuronal representation in the mormyrid electrosensory system. J Exp Biol 207: 2443–2453

    Article  PubMed  Google Scholar 

  • Goulet J, Engelmann J, Chagnaud B, Franosch JM, Suttner MD, van Hemmen JL (2007) Object localization through the lateral line system of fish: theory and experiment. J Com Physiol A 194(1): 1–7

    Article  Google Scholar 

  • Harder W, Schief A, Uhlemann H (1967) Zur empfindlichkeit des schwachelektrischen Fisches Gnathonemus petersii (Mormyriformes; Teleostei) gegenüber elektrischen Feldern. Z Vergl Physiol 54: 89–08

    Article  Google Scholar 

  • Heiligenberg W (1973) Electrolocation of objects in the electric fish Eigenmannia (Rhamphichthyidae, Gymnotoidei). J Comp Physiol 87: 137–64

    Article  Google Scholar 

  • Heiligenberg W (1977) Principles of electrolocation and jamming avoidance in electric fish. In: Aneuroethologicalapproach. Braitenberg V(eds) Studies of brain function. Springer Verlag, Berlin, pp 1–5

    Google Scholar 

  • Hollmann M, von der Emde G (2004) Two electrical foveae in the skin of the weakly electric fish, Gnathonemus persii (Teleostei). 97 Jahresversammlung der Deutschen Zoologischen Gesellschaft, Rostock, p P14

  • Hollmann M, von der Emde G (2007) Electrofoveal regions on the skin of a weakly electric fish. 8th Int Congress of Neuroethology, Vancouver, Canada

  • Jeffress LA (1948) A place theory of sound localization. J Comp Physiol Psychol 41: 35–9

    Article  CAS  PubMed  Google Scholar 

  • Kalmijn AJ (1974) The detection of electric fields from inanimate and animate sources other than electric organs. In: Fessard A(eds) Handbook of sensory physiology. Springer, Berlin, pp 148–00

    Google Scholar 

  • Karmeier K, van Hateren JH, Kern R, Egelhaaf M (2006) Encoding of naturalistic optic flow by a population of blowfly motion-sensitive neurons. J Neurophysiol 96: 1602–614

    Article  CAS  PubMed  Google Scholar 

  • Landsberger M, von der Emde G (2007) Relevance of a peculiar retina type for visual detection in the weakly electric elephantnose fish. In: Eigth international conference of neuroethology, Vancouver/Canada, p PO37

  • Leibowitz HW (1971) Sensory, learned, and cognitive mechanisms of size perception. Ann NY Acad Sci 188: 47–0

    Article  CAS  PubMed  Google Scholar 

  • Lewis JE, Maler L (2001) Neuronal population codes and the perception of object distance in weakly electric fish. J Neurosci 21: 2842–850

    CAS  PubMed  Google Scholar 

  • Lissmann HW (1958) On the function and evolution of electric organs in fish. J Exp Biol 35: 156–91

    Google Scholar 

  • Lissmann HW, Machin KE (1958) The mechanism of object location in Gymnarchus niloticus and similar fish. J Exp Biol 35: 451–86

    Google Scholar 

  • McCreery DB (1977) Spatial organization of receptive fields of lateral lemniscus neurons of the lateral line lobe of the catfish Ictalurus nebulosus. J Comp Physiol A 113: 341–53

    Article  Google Scholar 

  • Migliaro A, Caputi AA, Budelli R (2005) Theoretical analysis of pre-receptor image conditioning in weakly electric fish. PLoS Comp Biol 1: 123–31

    Article  CAS  Google Scholar 

  • Mountcastle V, Darian-Smith I (1974) Neuronal mechanisms in somesthesia. CV Mosby Company, Mosby

    Google Scholar 

  • Pereira ASF, Centurión V, Caputi AA (2005) Contextual effects of small environments on the electric images of objects and their brain evoked responses in weakly electric fish. J Exp Biol 208: 961–72

    Article  PubMed  Google Scholar 

  • Petkov N, Subramanian E (2007) Motion detection, noise reduction, texture suppression, and contour enhancement by spatiotemporal Gabor filters with surround inhibition. Biol Cybern doi:10.1007/s00422-007-0182-0

  • Pusch R, von der Emde G, Hollmann M, Bacelo J, Nöbel S, Grant K, Engelmann J (2008) Active Sensing in a Mormyrid Fish — Electric Images and Peripheral Modifications of the Signal Carrier give Evidence of Dual Foveation. J Exp Biol 211: 921–34

    Article  PubMed  Google Scholar 

  • Quinet P (1971) Etude systematique des organes sensoriels de la peau des Mormyriformes (Pisces, Mormyriformes). Ann Mus R Afr Cent Tervuren (Belg) Ser 8(190): 1–7

    Google Scholar 

  • Rasnow B (1996) The effects of simple objects on the electric field of Apteronotus. J Com Physiol A 178: 397–11

    Google Scholar 

  • Ratcliff F (1965) Mach bands: quantitative studies on neuronal structures in the retina. Holden Day, San Francisco

    Google Scholar 

  • Rother D (2003) Simulación de Imágenes Eléctricas en Peces Eléctricos de Descarga Débil. Simulación de Imágenes Eléctricas en Peces Eléctricos de Descarga Débil. Universidad de la República, Montevideo, p 93

  • Rother D, Migliaro A, Canetti R, Gomez L, Caputi A, Budelli R (2003) Electric images of two low resistance objects in weakly electric fish. Biosystems 71: 169–77

    Article  PubMed  Google Scholar 

  • Sachdev RN, Catania KC (2002) Receptive fields and response properties of neurons in the star-nosed mole’s somatosensory fovea. J Neurophysiol 87: 2602–611

    PubMed  Google Scholar 

  • Sawtell NB, Williams A, Roberts PD, von der Emde G, Bell CC (2006) Effects of sensing behavior on a latency code. J Neurosci 26: 8221–234

    Article  CAS  PubMed  Google Scholar 

  • Schuster S, Amtsfeld S (2002) Template-matching describes visual pattern-recognition tasks in the weakly electric fish Gnathonemus petersii. J Exp Biol 205: 549–57

    PubMed  Google Scholar 

  • Schwarz S, von der Emde G (2001) Distance discrimination during active electrolocation in the weakly electric fish Gnathonemus petersii. J Comp Physiol A 186: 1185–197

    Article  CAS  Google Scholar 

  • Sherman SM (1979) Functional-significance of X and Y cells in normal and visually deprived cats. Trends Neurosci 2: 192–95

    Article  Google Scholar 

  • Sicardi EA, Caputi AA, Budelli R (2000) Physical basis of distance discrimination in weakly electric fish. Physica A 86–3

  • Szabo T, Hagiwara S (1967) A latency change mechanism involved in sensory coding of electric fish (mormyrids). Physiol Behav 2: 331–35

    Article  Google Scholar 

  • von der Emde G (2006) Non-visual environmental imaging and object detection through active electrolocation in weakly electric fish. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 192(6): 601–12

    Article  PubMed  Google Scholar 

  • von der Emde G, Ronacher B (1994) Perception of electric properties of objects in electrolocating weakly electric fish: two-dimensional similarity scaling reveals a City-Block metric. J Comp Physiol A 175: 801–12

    Google Scholar 

  • von der Emde G, Fetz S (2007) Distance, shape and more: Recognition of object features during active electrolocation in a weakly electric fish. J Exp Biology 210: 3082–095

    Article  Google Scholar 

  • von der Emde G, Schwarz S, Gomez L, Budelli R, Grant K (1998) Electric fish measure distance in the dark. Nature 395: 890–94

    Article  PubMed  Google Scholar 

  • Wagner HJ (2007) Bipolar Cells in the “Grouped Retina” of the Elephantnose Fish (Gnathonemus petersii). Vis Neurosci 24(3): 355–62

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob Engelmann.

Additional information

J. Engelmann and J. Bacelo contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Engelmann, J., Bacelo, J., Metzen, M. et al. Electric imaging through active electrolocation: implication for the analysis of complex scenes. Biol Cybern 98, 519–539 (2008). https://doi.org/10.1007/s00422-008-0213-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-008-0213-5

Keywords

Navigation