[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Neuronal selectivity, population sparseness, and ergodicity in the inferior temporal visual cortex

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The sparseness of the encoding of stimuli by single neurons and by populations of neurons is fundamental to understanding the efficiency and capacity of representations in the brain, and was addressed as follows. The selectivity and sparseness of firing to visual stimuli of single neurons in the primate inferior temporal visual cortex were measured to a set of 20 visual stimuli including objects and faces in macaques performing a visual fixation task. Neurons were analysed with significantly different responses to the stimuli. The firing rate distribution of 36% of the neurons was exponential. Twenty-nine percent of the neurons had too few low rates to be fitted by an exponential distribution, and were fitted by a gamma distribution. Interestingly, the raw firing rate distribution taken across all neurons fitted an exponential distribution very closely. The sparseness a s or selectivity of the representation of the set of 20 stimuli provided by each of these neurons (which takes a maximal value of 1.0) had an average across all neurons of 0.77, indicating a rather distributed representation. The sparseness of the representation of a given stimulus by the whole population of neurons, the population sparseness a p, also had an average value of 0.77. The similarity of the average single neuron selectivity a s and population sparseness for any one stimulus taken at any one time a p shows that the representation is weakly ergodic. For this to occur, the different neurons must have uncorrelated tuning profiles to the set of stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aggelopoulos NC, Franco L, Rolls ET (2005) Object perception in natural scenes: encoding by inferior temporal cortex simultaneously recorded neurons. J Neurophysiol 93:1342–1357

    Article  PubMed  Google Scholar 

  • Atick JJ (1992) Could information theory provide an ecological theory of sensory processing?. Nature 3:213–251

    Google Scholar 

  • Baddeley RJ, Abbott LF, Booth MJA, Sengpiel F, Freeman T, Wakeman EA, Rolls ET (1997) Responses of neurons in primary and inferior temporal visual cortices to natural scenes. Proc R Soc Lond B 264:1775–1783

    Article  CAS  Google Scholar 

  • Barlow HB (1961) Possible principles underlying the transformation of sensory messages. In: Rosenblith W (ed) MIT Press, Sensory Communication. Cambridge

  • Barlow HB, Kaushal TP, Mitchison GJ (1989) Finding minimum entropy codes. Neural Comput 1:412–423

    Article  Google Scholar 

  • Booth MCA, Rolls ET (1998) View-invariant representations of familiar objects by neurons in the inferior temporal visual cortex. Cereb Cortex 8:510–523

    Article  CAS  PubMed  Google Scholar 

  • Desimone R (1991) Face-selective cells in the temporal cortex of monkeys. J Cogn Neurosci 3:1–8

    Article  Google Scholar 

  • Feigenbaum JD, Rolls ET (1991) Allocentric and egocentric spatial information processing in the hippocampal formation of the behaving primate. Psychobiology 19:21–40

    Google Scholar 

  • Field DJ (1994) What is the goal of sensory coding?. Neural Comput 6:559–601

    Article  Google Scholar 

  • Field DJ (1999) Wavelets, vision, and the statistics of natural scenes. Philos Trans R Soc Lond A 357:2527–2542

    Article  Google Scholar 

  • Foldiak P (2003) Sparse coding in the primate cortex. In: Arbib MA (ed) The handbook of brain theory and neural networks. MIT Press, Cambridge, pp 1064–1068

    Google Scholar 

  • Franco L, Rolls ET, Aggelopoulos NC, Treves A (2004) The use of decoding to analyze the contribution to the information of the correlations between the firing of simultaneously recorded neurons. Exp Brain Res 155:370–384

    Article  PubMed  Google Scholar 

  • Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Nat Acad Sci USA 79:2554–2558

    Article  CAS  PubMed  Google Scholar 

  • Judge SJ, Richmond BJ, Chu FC (1980) Implantation of magnetic search coils for measurement of eye position: An improved method. Vis Res 20:535–538

    Article  CAS  PubMed  Google Scholar 

  • Lehky SR, Sejnowski TJ, Desimone R (2005) Selectivity and sparseness in the responses of striate complex cells. Vis Res 45:57–73

    Article  PubMed  Google Scholar 

  • Levy WB, Baxter RA (1996) Energy efficient neural codes. Neural Comput 8:531–543

    Article  CAS  PubMed  Google Scholar 

  • Masuda N, Aihara K (2003) Ergodicity of spike trains: when does trial averaging make sense? Neural Comput 15:1341–1372

    Article  PubMed  Google Scholar 

  • Olshausen BA, Field DJ (1997) Sparse coding with an overcomplete basis set: a strategy employed by V1. Vis Res 37:3311–3325

    Article  CAS  PubMed  Google Scholar 

  • Olshausen BA, Field DJ (2004) Sparse coding of sensory inputs. Curr Opin Neurobiol 14:481–487

    Article  CAS  PubMed  Google Scholar 

  • Panzeri S, Treves A (1996) Analytical estimates of limited sampling biases in different information measures. Network 7:87–107

    Article  Google Scholar 

  • Perrett DI, Rolls ET, Caan W (1982) Visual neurons responsive to faces in the monkey temporal cortex. Exp Brain Res 47:329–342

    Article  CAS  PubMed  Google Scholar 

  • Rolls ET (1984) Neurons in the cortex of the temporal lobe and in the amygdala of the monkey with responses selective for faces. Human Neurobiol 3:209–222

    CAS  Google Scholar 

  • Rolls ET (2000) Functions of the primate temporal lobe cortical visual areas in invariant visual object and face recognition. Neuron 27:205–218

    Article  CAS  PubMed  Google Scholar 

  • Rolls ET (2005) Emotion Explained. Oxford University Press, Oxford

    Book  Google Scholar 

  • Rolls ET (2007) The representation of information about faces in the temporal and frontal lobes. Neuropsychologia 45:125–143

    Article  Google Scholar 

  • Rolls ET (2008) Memory, attention, and decision-making: a unifying computational neuroscience approach. Oxford University Press, Oxford

    Google Scholar 

  • Rolls ET, Tovee MJ (1995) Sparseness of the neuronal representation of stimuli in the primate temporal visual cortex. J Neurophysiol 73:713–726

    CAS  PubMed  Google Scholar 

  • Rolls ET, Deco G (2002) Computational neuroscience of vision. Oxford University Press, Oxford

    Google Scholar 

  • Rolls ET, Treves A (1998) Neural networks and brain function. Oxford University Press, Oxford

    Google Scholar 

  • Rolls ET, Treves A (1990) The relative advantages of sparse versus distributed encoding for associative neuronal networks in the brain. Network 1:407–421

    Article  Google Scholar 

  • Rolls ET, Sanghera MK, Roper-Hall A (1979) The latency of activation of neurons in the lateral hypthalamus and substantia innominata during feeding in the monkey. Brain Res 164:121–135

    Article  CAS  PubMed  Google Scholar 

  • Rolls ET, Treves A, Tovee MJ (1997a) The representational capacity of the distributed encoding of information provided by populations of neurons in the primate temporal visual cortex. Exp Brain Res 114:177–185

    Article  Google Scholar 

  • Rolls ET, Treves A, Tovee MJ, Panzeri S (1997b) Information in the neuronal representation of individual stimuli in the primate temporal visual cortex. J Comput Neurosci 4:309–333

    Article  CAS  Google Scholar 

  • Rolls ET, Franco L, Aggelopoulos NC, Reece S (2003) An information theoretic approach to the contributions of the firing rates and correlations between the firing of neurons. J Neurophysiol 89:2810–2822

    Article  PubMed  Google Scholar 

  • Rolls ET, Aggelopoulos NC, Franco L, Treves A (2004) Information encoding in the inferior temporal cortex: contributions of the firing rates and correlations between the firing of neurons. Biol Cybern 90:19–32

    Article  PubMed  Google Scholar 

  • Rolls ET, Franco L, Aggelopoulos NC, Perez JM (2006) Information in the first spike, the order of spikes, and the number of spikes provided by neurons in the inferior temporal visual cortex. Vis Res 46:4193–4205

    Article  PubMed  Google Scholar 

  • Tanaka K (1996) Inferotemporal cortex and object vision. Annu Rev Neurosci 19:109–139

    Article  CAS  PubMed  Google Scholar 

  • Tovee MJ, Rolls ET (1995) Information encoding in short firing rate epochs by single neurons in the primate temporal visual cortex. Vis Cogn 2:35–58

    Article  Google Scholar 

  • Tovee MJ, Rolls ET, Azzopardi P (1994) Translation invariance in the responses to faces of single neurons in the temporal visual cortical areas of the alert macaque. J Neurophysiol 72:1049–1060

    CAS  PubMed  Google Scholar 

  • Tovee MJ, Rolls ET, Treves A, Bellis RP (1993) Information encoding and the responses of single neurons in the primate temporal visual cortex. J Neurophysiol 70:640–654

    CAS  PubMed  Google Scholar 

  • Treves A (1990) Graded-response neurons and information encodings in autoassociative memories. Physical Review A 42:2418–2430

    Article  PubMed  Google Scholar 

  • Treves A, Rolls ET (1991) What determines the capacity of autoassociative memories in the brain? Network 2:371–397

    Article  Google Scholar 

  • Treves A, Panzeri S (1995) The upward bias in measures of information derived from limited data samples. Neural Comput 7:399–407

    Article  Google Scholar 

  • Treves A, Panzeri S, Rolls ET, Booth M, Wakeman EA (1999) Firing rate distributions and efficiency of information transmission of inferior temporal cortex neurons to natural visual stimuli. Neural Comput 11:611–641

    Article  Google Scholar 

  • Vinje WE, Gallant JL (2000) Sparse coding and decorrelation in primary visual cortex during natural vision. Science 287:1273–1276

    Article  CAS  PubMed  Google Scholar 

  • Vinje WE, Gallant JL (2002) Natural stimulation of the nonclassical receptive field increases information transmission efficiency in V1. J Neurosci 22:2904–2915

    CAS  PubMed  Google Scholar 

  • Vogels R (1999) Categorization of complex visual images by rhesus monkeys. Part 2: single-cell study. Eur J Neurosci 11:1239–1255

    Article  CAS  PubMed  Google Scholar 

  • Willmore B, Tolhurst DJ (2001) Characterizing the sparseness of neural codes. Network 12:255–270

    CAS  PubMed  Google Scholar 

  • Young MP, Yamane S (1992) Sparse population coding of faces in the inferotemporal cortex. Science 256:1327–1331

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edmund T. Rolls.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franco, L., Rolls, E.T., Aggelopoulos, N.C. et al. Neuronal selectivity, population sparseness, and ergodicity in the inferior temporal visual cortex. Biol Cybern 96, 547–560 (2007). https://doi.org/10.1007/s00422-007-0149-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-007-0149-1

Keywords

Navigation