[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Sequences of predictive eye movements form a fractional Brownian series – implications for self-organized criticality in the oculomotor system

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

When human subjects are presented with a pair of visual targets that alternate periodically, they track the targets with rapid eye movements known as saccades. In previous work we demonstrated that at low pacing rates (<0.5 Hz), saccades have a latency of about 180 ms, and the latencies are uncorrelated from trial to trial. At high pacing rates (>0.6 Hz), latencies are much shorter: subjects make predictive saccades that anticipate target motion. The predictive latencies are correlated and appear to form a fractional Brownian motion. Here we confirm this finding by examining the rate of decay of nonlinear forecasting of predictive latencies. We further characterize the nature of predictive saccade latencies through the use of detrended fluctuation analysis and surrogate data. These results lead us to conclude that predictive saccades may exhibit a form of self-organized criticality, which enables rapid response to changes in stimulus timing. We provide an experimental demonstration of this.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • PS Addison (1997) Fractals and chaos an illustrated course Institute of Physics Publishing Philadelphia

    Google Scholar 

  • P Bak (1996) How nature works: the science of self-organized criticality Copernicus Books New York

    Google Scholar 

  • P Bak C Tang K Wiesenfeld (1987) ArticleTitleSelf-organized criticality: an explanation of the 1/f noise Phys Rev Lett 59 381–384 Occurrence Handle10.1103/PhysRevLett.59.381 Occurrence Handle10035754

    Article  PubMed  Google Scholar 

  • P Bak C Tang K Wiesenfeld (1988) ArticleTitleSelf-organized criticality Phys Rev A 38 364–374 Occurrence Handle10.1103/PhysRevA.38.364 Occurrence Handle9900174

    Article  PubMed  Google Scholar 

  • JB Bassingthwaighte LS Liebovitch BJ West (1994) Fractal physiology Oxford University Press New York

    Google Scholar 

  • BeckerW(1991) In: Carpenter RHS (ed) Eye movements. Macmillan, London, pp 95–137

  • SR Chakraborti GR Barnes CJ Collins (2002) ArticleTitleFactors affecting the longevity of a short-term velocity store for predictive oculomotor tracking Exp Brain Res 144 152–158 Occurrence Handle10.1007/s00221-002-1008-x Occurrence Handle12012153

    Article  PubMed  Google Scholar 

  • DR Chialvo P Bak (1999) ArticleTitleLearning from mistakes Neurosci 90 1137–1148 Occurrence Handle10.1016/S0306-4522(98)00472-2

    Article  Google Scholar 

  • M Ding Y Chen JA Kelso (2002) ArticleTitleStatistical analysis of timing errors Brain Cogn 48 98–106 Occurrence Handle10.1006/brcg.2001.1306 Occurrence Handle11812035

    Article  PubMed  Google Scholar 

  • JD Farmer JJ Sidorowich (1987) ArticleTitlePredicting chaotic time series Phys Rev Lett 59 845–848 Occurrence Handle10.1103/PhysRevLett.59.845 Occurrence Handle10035887

    Article  PubMed  Google Scholar 

  • WJ Freeman (2004) ArticleTitleOrigin, structure, and role of background EEG activity, part 2 Analytic phase Clin Neurophysiol 115 2089–2107 Occurrence Handle10.1016/j.clinph.2004.02.028 Occurrence Handle15294211

    Article  PubMed  Google Scholar 

  • D Gagnon GA O’Driscoll M Petrides GB Pike (2002) ArticleTitleThe effect of spatial and temporal information on saccades and neural activity in oculomotor structures Brain 125 123–139 Occurrence Handle10.1093/brain/awf005 Occurrence Handle11834598

    Article  PubMed  Google Scholar 

  • B Gaymard CJ Ploner S Rivaud AI Vermersch C Pierrot-Deseilligny (1998) ArticleTitleCortical control of saccades Exp Brain Res 123 159–163 Occurrence Handle10.1007/s002210050557 Occurrence Handle9835405

    Article  PubMed  Google Scholar 

  • JM Hausdorff C-K Peng Z Ladin JY Wei AL Goldberger (1995) ArticleTitleIs walking a random walk? Evidence for long-range correlations in stride interval of human gait J Appl Physiol 78 349–358 Occurrence Handle7713836

    PubMed  Google Scholar 

  • RB Ivry RM Spencer (2004) ArticleTitleThe neural representation of time Curr Opin Neurobiol 14 225–232 Occurrence Handle10.1016/j.conb.2004.03.013 Occurrence Handle15082329

    Article  PubMed  Google Scholar 

  • WM Joiner M Shelhamer (2004) ArticleTitleAn investigation of the relative stability of reactive and predictive oculomotor tracking J Vestibular Res 14 209

    Google Scholar 

  • JAS Kelso DL Southard D Goodman (1979) ArticleTitleOn the nature of human interlimb coordination Science 203 1029–1031 Occurrence Handle424729

    PubMed  Google Scholar 

  • K Linkenkaer-Hansen VV Nikouline JM Palva RJ Ilmoniemi (2001) ArticleTitleLong-range temporal correlations and scaling behavior in human brain oscillations J Neurosci 21 1370–1377 Occurrence Handle11160408

    PubMed  Google Scholar 

  • BB Mandelbrot (1983) The fractal geometry of nature W.H. Freeman and Company New York

    Google Scholar 

  • NH Packard JP Crutchfield JD Farmer RS Shaw (1980) ArticleTitleGeometry from a time series Phys Rev Lett 45 712–716 Occurrence Handle10.1103/PhysRevLett.45.712

    Article  Google Scholar 

  • Peng C-K, Hausdorff JM, Goldberger AL (2000) In: Walleczek J (ed) Self-organized biological dynamics & nonlinear control. Cambridge University Press, NewYork, pp 66–96

  • C-K Peng S Havlin HE Stanley AL Goldberger (1995) ArticleTitleQuantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series Chaos 5 82–87 Occurrence Handle10.1063/1.166141 Occurrence Handle11538314

    Article  PubMed  Google Scholar 

  • S Roberts R Eykholt MH Thaut (2000) ArticleTitleAnalysis of correlations and search for evidence of deterministic chaos in rhythmic motor control by the human brain Phys Rev E 62 2597–2607 Occurrence Handle10.1103/PhysRevE.62.2597

    Article  Google Scholar 

  • D Ruelle (1990) ArticleTitleDeterministic chaos: the science and the fiction Proc Royal Soc Lond A 427 241–248

    Google Scholar 

  • M Shelhamer (2005) ArticleTitleSequences of predictive saccades are correlated over a span of approximately two seconds, and produce a fractal time series J Neurophysiol 93 2002–2011 Occurrence Handle10.1152/jn.00800.2004 Occurrence Handle15548627

    Article  PubMed  Google Scholar 

  • M Shelhamer CD Gross (1998) ArticleTitlePrediction of the sequence of optokinetic nystagmus eye movements reveals deterministic structure in reflexive oculomotor behavior IEEE Trans Biomed Eng 45 668–670 Occurrence Handle10.1109/10.668759 Occurrence Handle9581067

    Article  PubMed  Google Scholar 

  • M Shelhamer WM Joiner (2003) ArticleTitleSaccades exhibit abrupt transition between reactive and predictive; predictive saccade sequences have long-term correlations J Neurophysiol 90 2763–2769 Occurrence Handle14534279

    PubMed  Google Scholar 

  • CA Skarda WJ Freeman (1987) ArticleTitleHow brains make chaos in order to make sense of the world Behav Brain Sci 10 161–195

    Google Scholar 

  • S Sklavos J Porrill CR Kaneko P Dean (2005) ArticleTitleEvidence for wide range of time scales in oculomotor plant dynamics: Implications for models of eye-movement control Vision Res 45 1525–1542 Occurrence Handle10.1016/j.visres.2005.01.005 Occurrence Handle15781071

    Article  PubMed  Google Scholar 

  • CJ Stam EA Bruin Particlede (2004) ArticleTitleScale-free dynamics of global functional connectivity in the human brain Hum Brain Mapp 22 97–109 Occurrence Handle10.1002/hbm.20016 Occurrence Handle15108297

    Article  PubMed  Google Scholar 

  • MC Teich (1989) ArticleTitleFractal character of the auditory neural spike train IEEE Trans Biomed Eng 36 150–160 Occurrence Handle10.1109/10.16460 Occurrence Handle2921061

    Article  PubMed  Google Scholar 

  • J Theiler S Eubank A Longtin B Galdrikian JD Farmer (1992) ArticleTitleTesting for nonlinearity in time series: the method of surrogate data Physica D 58 77–94

    Google Scholar 

  • P Trillenberg C Gross M Shelhamer (2001) ArticleTitleRandom walks, random sequences, and nonlinear dynamics in human optokinetic nystagmus J Appl Physiol 91 1750–1759 Occurrence Handle11568159

    PubMed  Google Scholar 

  • AA Tsonis JB Elsner (1992) ArticleTitleNonlinear prediction as a way of distinguishing chaos from random fractal sequences Nature 358 217–220 Occurrence Handle10.1038/358217a0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Shelhamer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shelhamer, M. Sequences of predictive eye movements form a fractional Brownian series – implications for self-organized criticality in the oculomotor system. Biol Cybern 93, 43–53 (2005). https://doi.org/10.1007/s00422-005-0584-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-005-0584-9

Keywords

Navigation