[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Parameter estimation in a model for multidimensional recording of neuronal data: a Gibbsian approximation approach

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract.

This article proposes improved numerical procedures for estimating parameters in a spatiotemporal lattice model introduced for the analysis of cortical activities monitored from arrays of diodes. The numerical algorithms are based on approximations inspired by statistical physics. Both Gibbsian and mean-field approximations are used; they allow for computing local conditional probabilities inside the lattice. The statistical procedures rely on the computation of pseudomaximum-likelihood estimators. The estimators are evaluated on the basis of Monte Carlo simulations. These simulations show that mean-field approximations are useful for reducing the variance of estimators when the data are recorded from arrays of 144 diodes (which are in accordance with standard practice). In light of these improved methods, we give new interpretations for a data set obtained from optical recording of a Guinea pig's auditory cortex in response to pure tone stimulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Acknowledgments.

The authors would like to thank the French national project ACI Télémédecine “Propriétés Emergentes Fonctionnelles et Modèles non-linéaires” for its support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. François.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdallahi, L., Rota, C., Béguin, M. et al. Parameter estimation in a model for multidimensional recording of neuronal data: a Gibbsian approximation approach. Biol. Cybern. 89, 170–178 (2003). https://doi.org/10.1007/s00422-003-0416-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-003-0416-8

Navigation