Abstract
Main conclusion
This study reveals that mutations in BRIP1/2 subunits of the BAS complex disrupt root meristem development by decreasing PIN genes expression, affecting auxin transport, and downregulating essential root genes PLT.
Abstract
Switch defective/sucrose non-fermentable (SWI/SNF) chromatin remodeling complexes play vital roles in plant development. BRAHMA-interacting proteins1 (BRIP1) and BRIP2 are subunits of BRAHMA (BRM)-associated SWI/SNF complex (BAS) in plants; however, their role and underlying regulatory mechanism in root development are still unknown. Here, we show that brip1 brip2 double mutants have a significantly shortened root meristem and an irregular arrangement in a portion of the root stem cell niche. The mutations in BRIP1 and BRIP2 cause decreased expression of the PIN-FORMED (PIN) genes, which in turn reduces the transport of auxin at the root tip, leading to the disruption of the accurate establishment of normal auxin concentration gradients in the stem cells. Chromatin immunoprecipitation (ChIP) experiments indicated that BRIP1 and BRIP2 directly bind to the PINs. Furthermore, we found a significant down-regulation in the expression of key root development genes, PLETHORA (PLT), in brip1 brip2. The brip1 brip2 plt1 plt2 quadruple mutations do not show further exacerbation in the short-root phenotype compared to plt1 plt2 double mutants. Using a dexamethasone (DEX)-inducible PLT2 transgenic line, we showed that acute overexpression of PLT2 partially rescues root meristem defects of brip1 brip2, suggesting that BRIP1 and BRIP2 act in part through the PLT1/2 pathway. Taken together, our results identify the critical role and the underlying mechanism of BRIP1/2 in maintaining the development of root meristem through the regulation of auxin output and expression of PLTs.
Similar content being viewed by others
Data availability
BRIP2 ChIP-seq data were downloaded from GEO under accession no. GSE142369.
Abbreviations
- SWI/SNF:
-
Switch/sucrose non-fermenting
- BRM:
-
BRAHMA
- BRIP1/2:
-
BRM-interacting protein1/2
- QC:
-
Quiescent center
- PLT:
-
PLETHORA
- PIN:
-
PIN-FORMED
- SHR:
-
SHORT-ROOT
- SCR:
-
SCARECROW
- ChIP:
-
Chromatin immunoprecipitation
- GR:
-
Glucocorticoid receptor
- DEX:
-
Dexamethasone
- DAG:
-
Day of germination
References
Adamowski M, Friml J (2015) PIN-dependent auxin transport: action, regulation, and evolution. Plant Cell 27:20–32. https://doi.org/10.1105/tpc.114.134874
Aida M, Beis D, Heidstra R, Willemsen V, Blilou I, Galinha C et al (2004) The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119:109–120. https://doi.org/10.1016/j.cell.2004.09.018
Band LR, Wells DM, Fozard JA, Ghetiu T, French AP, Pound MP et al (2014) Systems analysis of auxin transport in the Arabidopsis root apex. Plant Cell 26:862–875. https://doi.org/10.1105/tpc.113.119495
Benfey PN, Linstead PJ, Roberts K, Schiefelbein JW, Hauser MT, Aeschbacher RA (1993) Root development in Arabidopsis: four mutants with dramatically altered root morphogenesis. Development 119:57–70. https://doi.org/10.1242/dev.119.1.57
Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertová D, Jürgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602. https://doi.org/10.1016/S0092-8674(03)00924-3
Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J et al (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433:39–44. https://doi.org/10.1038/nature03184
Clapier CR, Cairns BR (2009) The biology of chromatin remodeling complexes. Annu Rev Biochem 78:273–304. https://doi.org/10.1146/annurev.biochem.77.062706.153223
Cui H, Levesque MP, Vernoux T, Jung JW, Paquette AJ, Gallagher KL et al (2007) An evolutionarily conserved mechanism delimiting SHR movement defines a single layer of endodermis in plants. Science 316:421–425. https://doi.org/10.1126/science.1139531
Di Laurenzio L, Wysocka-Diller J, Malamy JE, Pysh L, Helariutta Y, Freshour G et al (1996) The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell 86:423–433. https://doi.org/10.1016/s0092-8674(00)80115-4
Dinneny JR, Benfey PN (2008) Plant stem cell niches: standing the test of time. Cell 132:553–557. https://doi.org/10.1016/j.cell.2008.02.001
Friml J, Benková E, Blilou I, Wisniewska J, Hamann T, Ljung K et al (2002a) AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Cell 108:661–673. https://doi.org/10.1016/s0092-8674(02)00656-6
Friml J, Wiśniewska J, Benková E, Mendgen K, Palme K (2002b) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415:806–809. https://doi.org/10.1038/415806a
Friml J, Benková E, Mayer U, Palme K, Muster G (2003a) Automated whole mount localisation techniques for plant seedlings. Plant J 34:115–124. https://doi.org/10.1046/j.1365-313x.2003.01705.x
Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T et al (2003b) Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426:147–153. https://doi.org/10.1038/nature02085
Fu W, Yu Y, Shu J, Yu Z, Zhong Y, Zhu T et al (2023) Organization, genomic targeting, and assembly of three distinct SWI/SNF chromatin remodeling complexes in Arabidopsis. Plant Cell 35:2464–2483. https://doi.org/10.1093/plcell/koad111
Galinha C, Hofhuis H, Luijten M, Willemsen V, Blilou I, Heidstra R et al (2007) PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development. Nature 449:1053–1057. https://doi.org/10.1038/nature06206
Grieneisen VA, Xu J, Marée AF, Hogeweg P, Scheres B (2007) Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature 449:1008–1013. https://doi.org/10.1038/nature06215
Guo J, Cai G, Li YQ, Zhang YX, Su YN, Yuan DY et al (2022) Comprehensive characterization of three classes of Arabidopsis SWI/SNF chromatin remodelling complexes. Nat Plants 8:1423–1439. https://doi.org/10.1038/s41477-022-01282-z
He J, Duan Y, Hua D, Fan G, Wang L, Liu Y et al (2012) DEXH box RNA helicase-mediated mitochondrial reactive oxygen species production in Arabidopsis mediates crosstalk between abscisic acid and auxin signaling. Plant Cell 24:1815–1833. https://doi.org/10.1105/tpc.112.098707
Helariutta Y, Fukaki H, Wysocka-Diller J, Nakajima K, Jung J, Sena G et al (2000) The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell 101:555–567. https://doi.org/10.1016/s0092-8674(00)80865-x
Ho L, Crabtree GR (2010) Chromatin remodelling during development. Nature 463:474–484. https://doi.org/10.1038/nature08911
Lee Y, Lee WS, Kim SH (2013) Hormonal regulation of stem cell maintenance in roots. J Exp Bot 64:1153–1165. https://doi.org/10.1093/jxb/ers331
Levesque MP, Vernoux T, Busch W, Cui H, Wang JY, Blilou I et al (2006) Whole-genome analysis of the SHORT-ROOT developmental pathway in Arabidopsis. PLoS Biol 4:e143. https://doi.org/10.1371/journal.pbio.0040143
Li C, Gu L, Gao L, Chen C, Wei CQ, Qiu Q et al (2016) Concerted genomic targeting of H3K27 demethylase REF6 and chromatin-remodeling ATPase BRM in Arabidopsis. Nat Genet 48:687–693. https://doi.org/10.1038/ng.3555
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262
Mähönen AP, Ten Tusscher K, Siligato R, Smetana O, Díaz-Triviño S, Salojärvi J et al (2014) PLETHORA gradient formation mechanism separates auxin responses. Nature 515:125–129. https://doi.org/10.1038/nature13663
Michniewicz M, Brewer PB, Friml J (2007) Polar auxin transport and asymmetric auxin distribution. Arabidopsis Book 5:e0108. https://doi.org/10.1199/tab.0108
Müller A, Guan C, Gälweiler L, Tänzler P, Huijser P, Marchant A et al (1998) AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO J 17:6903–6911. https://doi.org/10.1093/emboj/17.23.6903
Nakajima K, Sena G, Nawy T, Benfey PN (2001) Intercellular movement of the putative transcription factor SHR in root patterning. Nature 413:307–311. https://doi.org/10.1038/35095061
Perilli S, Sabatini S (2010) Analysis of root meristem size development. Methods Mol Biol 655:177–187. https://doi.org/10.1007/978-1-60761-765-5_12
Petersson SV, Johansson AI, Kowalczyk M, Makoveychuk A, Wang JY, Moritz T et al (2009) An auxin gradient and maximum in the Arabidopsis root apex shown by high-resolution cell-specific analysis of IAA distribution and synthesis. Plant Cell 21:1659–1668. https://doi.org/10.1105/tpc.109.066480
Petrásek J, Friml J (2009) Auxin transport routes in plant development. Development 136:2675–2688. https://doi.org/10.1242/dev.030353
Petricka JJ, Winter CM, Benfey PN (2012) Control of Arabidopsis root development. Annu Rev Plant Biol 63:563–590. https://doi.org/10.1146/annurev-arplant-042811-105501
Sabatini S, Beis D, Wolkenfelt H, Murfett J, Guilfoyle T, Malamy J et al (1999) An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99:463–472. https://doi.org/10.1016/s0092-8674(00)81535-4
Sabatini S, Heidstra R, Wildwater M, Scheres B (2003) SCARECROW is involved in positioning the stem cell niche in the Arabidopsis root meristem. Genes Dev 17:354–358. https://doi.org/10.1101/gad.252503
Saini S, Sharma I, Kaur N, Pati PK (2013) Auxin: a master regulator in plant root development. Plant Cell Rep 32:741–757. https://doi.org/10.1007/s00299-013-1430-5
Santuari L, Sanchez-Perez GF, Luijten M, Rutjens B, Terpstra I, Berke L et al (2016) The PLETHORA gene regulatory network guides growth and cell differentiation in Arabidopsis roots. Plant Cell 28:2937–2951. https://doi.org/10.1105/tpc.16.00656
Sarkar AK, Luijten M, Miyashima S, Lenhard M, Hashimoto T, Nakajima K et al (2007) Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature 446:811–814. https://doi.org/10.1038/nature05703
Schena M, Lloyd AM, Davis RW (1991) A steroid-inducible gene expression system for plant cells. Proc Natl Acad Sci USA 88:10421–10425. https://doi.org/10.1073/pnas.88.23.10421
Scheres B (2007) Stem-cell niches: nursery rhymes across kingdoms. Nat Rev Mol Cell Biol 8:345–354. https://doi.org/10.1038/nrm2164
Stahl Y, Simon R (2005) Plant stem cell niches. Int J Dev Biol 49:479–489. https://doi.org/10.1387/ijdb.041929ys
Teale WD, Paponov IA, Palme K (2006) Auxin in action: signalling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol 7:847–859. https://doi.org/10.1038/nrm2020
Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ (1997) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9:1963–1971. https://doi.org/10.1105/tpc.9.11.1963
van den Berg C, Willemsen V, Hendriks G, Weisbeek P, Scheres B (1997) Short-range control of cell differentiation in the Arabidopsis root meristem. Nature 390:287–289. https://doi.org/10.1038/36856
Yang L, Zhang J, He J, Qin Y, Hua D, Duan Y et al (2014) ABA-mediated ROS in mitochondria regulate root meristem activity by controlling PLETHORA expression in Arabidopsis. PLoS Genet 10:e1004791. https://doi.org/10.1371/journal.pgen.1004791
Yang S, Li C, Zhao L, Gao S, Lu J, Zhao M et al (2015) The Arabidopsis SWI2/SNF2 chromatin remodeling ATPase BRAHMA targets directly to PINs and is required for root stem cell niche maintenance. Plant Cell 27:1670–1680. https://doi.org/10.1105/tpc.15.00091
Yu Y, Liang Z, Song X, Fu W, Xu J, Lei Y et al (2020) BRAHMA-interacting proteins BRIP1 and BRIP2 are core subunits of Arabidopsis SWI/SNF complexes. Nat Plants 6:996–1007. https://doi.org/10.1038/s41477-020-0734-z
Yu Y, Fu W, Xu J, Lei Y, Song X, Liang Z et al (2021) Bromodomain-containing proteins BRD1, BRD2, and BRD13 are core subunits of SWI/SNF complexes and vital for their genomic targeting in Arabidopsis. Mol Plant 14:888–904. https://doi.org/10.1016/j.molp.2021.03.018
Zazímalová E, Krecek P, Skůpa P, Hoyerová K, Petrásek J (2007) Polar transport of the plant hormone auxin—the role of PIN-FORMED (PIN) proteins. Cell Mol Life Sci 64:1621–1637. https://doi.org/10.1007/s00018-007-6566-4
Acknowledgements
We thank the Arabidopsis Biological Resource Center (ABRC) for seeds of T-DNA insertion lines, Songguang Yang (Guangdong Academy of Agricultural Sciences) for providing p35S:PLT2-GR, pPINs:PINs-GFP, and p35S:PLT2-GR seeds. This work was supported by the National Natural Science Foundation of China to C.L. (32070212, 32270322, and 31870289).
Author information
Authors and Affiliations
Contributions
CL conceived the project. XS performed most of the experiments. XS, YY, and JZ analyzed data. CL wrote the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflict of financial interest.
Additional information
Communicated by Dorothea Bartels.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Supplemental Fig. S1: a
The arrangement of QC in the WT, brip1, brip2, and brip1 brip2 root tips by PI staining at 5 DAG. The white arrow points to the position of QC. Scale bar = 50 μm. b The percentage of QC irregularly arranged in the WT, brip1, brip2, and brip1 brip2 root tips. At least 50 root tips are viewed under a microscope for each background (PPTX 410 KB)
Supplemental Fig. S2:
Root phenotype analysis in plants expressing GFP-tagged BRIP1 or BRIP2 in corresponding single/double mutant backgrounds. a The root phenotypes of the WT, brip1, brip2, brip1 brip2, pBRIP1:BRIP1-GFP brip1, pBRIP2:BRIP2-GFP brip2, pBRIP1:BRIP1-GFP brip1 brip2, and pBRIP2:BRIP2-GFP brip1 brip2 seedlings on 1/2 MS medium at 7 DAG. Scale bar = 1 cm. b Statistical result for primary root length of the WT, brip1, brip2, brip1 brip2, pBRIP1:BRIP1-GFP brip1, pBRIP2:BRIP2-GFP brip2, pBRIP1:BRIP1-GFP brip1 brip2, and pBRIP2:BRIP2-GFP brip1 brip2. The data represent mean ± SD (n = 10 plants). Lower-case letters indicate significant differences, as determined by two-way ANOVA with Tukey’s multiple comparisons test (PPTX 546 KB)
Supplemental Fig. S3:
Exogenous application of auxin fails to rescue the short-root phenotype of brip1 brip2. a The root phenotypes of the WT, brip1, brip2, and brip1 brip2 seedlings on 1/2 MS medium or 1/2 MS medium supplemented with 0.02 μM IAA, 0.05 μM IAA, 0.1 μM IAA, and 0.2 μM IAA at 5 DAG. Scale bar = 1 cm. b Statistical result for primary root length of the WT, brip1, brip2, and brip1 brip2 seedlings on 1/2 MS medium or 1/2 MS medium supplemented with 0.02 μM IAA. The data represent mean ± SD (n = 10 plants). NS, not significant as determined by Student’s t test (PPTX 599 KB)
Supplemental Fig. S4:
Exogenous application of auxin partially rescues the root meristem of brip1 brip2. a The root meristem of the WT and brip1 brip2 seedlings on 1/2 MS medium or 1/2 MS medium supplemented with 0.02 μM IAA at 5 DAG. Scale bar = 50 μm. b Statistical result for root meristem size of the WT and brip1 brip2 seedlings on 1/2 MS medium or 1/2 MS medium supplemented with 0.02 μM IAA. The data represent mean ± SD (n ≥ 10 plants). *P < 0.05; NS, not significant as determined by Student’s t test (PPTX 637 KB)
Supplemental Fig. S5:
BRIP2 does not target to PLT1 and PLT2 directly. a, b ChIP-qPCR analysis of the enrichment of BRIP2 to the different regions of PLT1and PLT2 loci in WT and pBRIP2:BRIP2-GFP Arabidopsis roots. The top of the diagram shows a schematic of the detected genes in the genome. The black thick frame, the black thin frame and the black line represent the exon, UTR, intron and promoter of genes, respectively. P/C represents the primer designed for the detected regions. *P < 0.05; NS, not significant as determined by Student’s t test. (PPTX 85 KB)
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Song, X., Yu, Y., Zhu, J. et al. BRIP1 and BRIP2 maintain root meristem by affecting auxin-mediated regulation. Planta 259, 8 (2024). https://doi.org/10.1007/s00425-023-04283-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00425-023-04283-0