[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Simple mixing as the major control of the evolution of volcanic suites in the Ecuadorian Andes

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Examination of an extensive major and trace element database for about 700 whole rocks from the Ecuadorian Andes reveals series of local trends typified by three volcanoes: Iliniza and Pichincha from the Western Cordillera and Tungurahua from the Eastern Cordillera. These local trends are included in a more scattered global trend that reflects typical across-arc chemical variations. The scatter of the global trend is attributed to greater crustal contributions or decreasing melt fractions. Trace element modelling shows that the local trends are consistent with mixing, and not with any fractional crystallization or progressive melting dominated processes. These local trends are extendable to include samples from other Ecuadorian volcanoes, suggesting that mixing processes are dominant throughout the region. Mixing model using trace and major element analyses identifies two end-members: low-silica, basaltic and high-silica, dacitic magmas. It also shows that mixing occurred between magmas after their segregation, rather than earlier mixing between the solid sources prior to melting. As a consequence, there must exist efficient magma-mixing processes that can overcome the obstacles to mixing magmas with contrasting physical properties, and can produce series of hybrid liquids over regional-scale. Model calculations show that estimated silicic end-members are primary magmas and are not co-magmatic derivatives of the corresponding mafic end-members. Lavas of Ecuadorian volcanoes are likely originated from magmas of contrasting origins, such as basaltic magmas generated by fluxed melting of peridotites in the mantle wedge and dacitic, adakite-type magmas originating from the slab or the mafic lower crust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Allègre CJ, Minster JF (1978) Quantitative models of trace element behavior in magmatic processes. Earth Planet Sci Lett 38:1–25

    Article  Google Scholar 

  • Allègre CJ, Treuil M, Minster JF, Minster B, Albarède F (1977) Systematic use of trace elements in igneous processes Part I: fractional crystallization processes in volcanic suites. Contrib Miner Petrol 60:57–75

    Article  Google Scholar 

  • Anderson AT (1976) Magma mixing: petrological process and volcanological tool. J Volcanol Geotherm Res 1:3–33

    Article  Google Scholar 

  • Arculus RJ, Lapierre H, Jaillard E (1999) Geochemical window into subduction and accretion processes: Raspas metamorphic complex, Ecuador. Geology 27:547–550

    Article  Google Scholar 

  • Atherton MP, Petford N (1993) Generation of sodium-rich magmas from newly underplated basaltic crust. Nature 362:144–146

    Article  Google Scholar 

  • Barberi F, Coltelli M, Ferrara G, Innocenti F, Navarro JM, Santacroce R (1988) Plio-Quternary volcanism in Ecuador. Geol Mag 125:1–14

    Article  Google Scholar 

  • Barragan R, Geist D, Hall ML, Larson P, Kurz M (1998) Subduction controls on the composition of lavas from the Ecuadorian Andes. Earth Planet Sci Lett 154:153–166

    Article  Google Scholar 

  • Beard JS, Lofgren GE (1989) Effect of water on the composition of partial melts of greenstones and amphibolites. Science 144:195–197

    Article  Google Scholar 

  • Bourdon B, Joron J-L, Claude-Ivanaj C, Allègre CJ (1998) U–Th–Pa–Ra systematics for the Grande Comore volcanics: melting processes in an upwelling plume. Earth Planet Sci Lett 164:119–133

    Article  Google Scholar 

  • Bourdon E, Eissen J-P, Monzier M, Robin C, Martin H, Cotten J, Hall ML (2002a) Adakite-like lavas from Antisana volcano (Ecuador): evidence for slab melt metasomatism beneath the Andean Northern Volcanic Zone. J Petrol 43:199–217

    Article  Google Scholar 

  • Bourdon E, Eissen J-P, Gutscher M-A, Monzier M, Samaniego P, Robin C, Bollinger C, Cotten J (2002b) Slab melting and slab melt metasomatism in the Northern Andean Volcanic Zone: adakites and high-Mg andesites from Pichincha volcano (Ecuador). Bull Soc Géol Fr 173:195–206

    Article  Google Scholar 

  • Bourdon E, Eissen J-P, Gutscher M-A, Monzier M, Hall ML, Cotten J (2003) Magmatic response to early aseismic ridge subduction: The ecuadorian margin case (South America). Earth Planet Sci Lett 205:123–138

    Article  Google Scholar 

  • Bryant JA, Yogodzinski GM, Hall ML, Lewicki JL, Bailey DG (2006) Geochemical constraints on the origin of volcanic rocks from the Andean Northern Volcanic zone, Ecuador. J Petrol 47:1147–1175

    Article  Google Scholar 

  • Campbell IH, Turner JS (1985) Turbulent mixing between fluids with different viscosities. Nature 313:39–42

    Article  Google Scholar 

  • Chiaradia M, Müntener O, Beate B, Fontignie D (2009) Adakite-like volcanism of Ecuador: lower crust magmatic evolution and recycling. Contrib Miner Petrol 158:563–588

    Article  Google Scholar 

  • Couch S, Sparks RSJ, Carroll MR (2001) Mineral disequilibrium in lavas explained by convective self-mixing in open magma chambers. Nature 411:1037–1039

    Article  Google Scholar 

  • Defant MJ, Drummond MS (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347:662–665

    Article  Google Scholar 

  • DePaolo DJ (1981) Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet Sci Lett 53:189–202

    Article  Google Scholar 

  • Dickinson WR (1975) Potash-depth (K-h) relations in continental margin and intra-oceanic magmatic arcs. Geology 3:53–56

    Article  Google Scholar 

  • Eichelberger JC (1975) Origin of andesite and dacite: evidence of mixing at Glass Mountain in California and at other Circum-Pacific volcanoes. Geol Soc Am Bull 86:1381–1391

    Article  Google Scholar 

  • Eichelberger JC (1980) Vesiculation of mafic magma during replenishment of silicic magma reservoirs. Nature 288:446–450

    Article  Google Scholar 

  • Feininger T (1987) Allochthonous terranes in the Andes of Ecuador and northwestern Peru. Can J Earth Sci 24:266–278

    Article  Google Scholar 

  • Feininger T, Seguin MK (1983) Bouguer gravity anomaly field and inferred crustal structure of continental Ecuador. Geology 11:40–44

    Article  Google Scholar 

  • Fourcade S, Allègre CJ (1981) Trace elements behavior in granite genesis: A case study The calc-alkaline plutonic association from the Querigut complex (Pyrénées, France). Contrib Miner Petrol 76:177–195

    Article  Google Scholar 

  • Francis PW, Moorbath S, Thorpe RS (1977) Strontium isotope data for recent andesites in Ecuador and north Chile. Earth Planet Sci Lett 37:197–202

    Article  Google Scholar 

  • Garrison JM, Davidson JP (2003) Dubious case for slab melting in the Northern volcanic zone of the Andes. Geology 31:565–568

    Article  Google Scholar 

  • Gill JB (1981) Orogenic andesites and plate tectonics. Springer, Berlin, 390 pp

  • Gorton MP (1997) The geochemistry and origin of quaternary volcanism in the New Hebrides. Geoch Cosmochim Acta 41:1251–1270

    Google Scholar 

  • Gourgaud A, Fichaud M, Joron J-L (1989) Magmatology of Mt. Pelée (Martinique, F.W.I.). I: Magma mixing, triggering of the 1902 and 1929 Pelean nuées ardentes. J Volcanol Geotherm Res 38:143–169

    Article  Google Scholar 

  • Grove TL, Baker MB (1984) Phase equilibrium controls on the tholeiitic versus calc-alkaline differentiation trends. J Geophys Res 89:3253–3274

    Article  Google Scholar 

  • Grove TL, Elkins-Tanton LT, Parman SW, Chatterjee N, Müntener O, Gaetani GA (2003) Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends. Contrib Miner Petrol 145:515–533

    Article  Google Scholar 

  • Grove TL, Baker MB, Price RC, Parman SW, Elkins-Tanton LT, Chatterjee N, Müntener O (2005) Magnesian andesite and dacite lavas from Mt. Shasta, northern California: products of fractional crystallization of H2O-rich mantle melts. Contrib Mineral Petrol 148:542–565

    Article  Google Scholar 

  • Guillier B, Chatelain J-L, Jaillard E, Yepas H, Poupine G, Fels J-F (2001) Seismological evidence on the geometry of the orogenic system in central-northern Ecuador (South America). Geophys Res Lett 28:3749–3752

    Article  Google Scholar 

  • Gutscher M-A, Maury RC, Eissen J-P, Bourdon E (2000) Can slab melting be caused by flat subduction? Geology 28:535–538

    Article  Google Scholar 

  • Hall ML, Robin C, Beate B, Mothes P, Monzier M (1999) Tungurahua Volcano, Ecuador: structure, eruptive history and hazards. J Volcanol Geotherm Res 91:1–23

    Article  Google Scholar 

  • Harmon RS, Barreiro BA, Moorbath S, Hoefs J, Francis PW, Thorpe RS, Déruelle B, McHugh J, Viglino JA (1984) Regional O-, Sr-, and Pb-isotope relationships in late Cenozoic calc-alkaline lavas of the Andean Cordillera. J Geol Soc Lond 141:803–822

    Article  Google Scholar 

  • Hawkesworth CJ, Norry MJ, Roddick JC, Baker PE, Francis PW, Thorpe RS (1979) 143Nd/144Nd, 87Sr/86Sr, and incompatible element variations in calc-alkaline andesites and plateau lavas from South America. Earth Planet Sci Lett 42:45–87

    Article  Google Scholar 

  • Hidalgo S, Monzier M, Martin H, Chazot G, Eissen J-P, Cotten J (2007) Adakitic magmas in the Ecuadorian Volcanic front: Petrogenesis of the Iliniza Volcanic Complex (Ecuador). J Volcanol Geotherm Res 159:366–392

    Article  Google Scholar 

  • Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of Central Chile. Contrib Miner Petrol 98:455–489

    Article  Google Scholar 

  • Hofmann AW, Feigenson MD (1983) Case studies on the origin of Grenada basalts I: theory and reassessment of Grenada basalts. Contrib Miner Petrol 84:382–389

    Article  Google Scholar 

  • Hörmann PK, Pichler H (1982) Geochemistry, petrology and origin of the cenozoic volcanic rocks of the Northern Andes in Ecuador. J Volcanol Geotherm Res 12:259–282

    Article  Google Scholar 

  • Huppert HE, Sparks RSJ, Turner JS (1982) Effects of volatiles on mixing in calc-alkaline magma systems. Nature 297:554–557

    Article  Google Scholar 

  • James DE, Murcia LA (1984) Crustal Contamination in northern Andean volcanics. J Geol Soc Lond 141:823–830

    Article  Google Scholar 

  • Kay RW (1978) Aleutian magnesian andesites: melts from subducted Pacific ocean crust. J Volcanol Geotherm Res 4:117–132

    Article  Google Scholar 

  • Kay RW (1980) Volcanic arc magmas: implications of a melting-mixing model for element recycling in the crust-upper mantle system. J Geol 88:497–522

    Article  Google Scholar 

  • Kelemen PB (1995) Genesis of high Mg# andesites and the continental crust. Contrib Miner Petrol 120:1–19

    Article  Google Scholar 

  • Kelemen PB, Koga KT, Shimizu N (1997) Geochemistry of gabbro sills in the crust-mantle transition zone of the Oman ophiolite: implications for the origin of the oceanic lower crust. Earth Planet Sci Lett 146:475–488

    Article  Google Scholar 

  • Kelemen PB, Yogodzinski GM, Scholl DW (2003) Along-strike variation in the Aleutian island arc: genesis of high Mg# andesite and implications for continental crust. In: Eiler JM (ed) Inside the subduction factory: Geophys Monogr 138. AGU, Washington, pp 223–275

    Google Scholar 

  • Kilian R, Pichler H (1989) The Northeandean volcanic zone. Zbl Geol Paläont Teil IH 5(6):1075–1085

    Google Scholar 

  • Kouchi A, Sunagawa I (1985) A model for mixing basaltic and dacitic magmas as deduced from experimental data. Contrib Miner Petrol 89:17–23

    Article  Google Scholar 

  • Kuno H (1950) Petrology of Hakone volcano and the adjacent areas, Japan. Geol Soc Am Bull 61:957–1019

    Article  Google Scholar 

  • Langmuir CH, Vocke RD Jr, Hanson GN, Hart SR (1978) A general mixing equation with applications to Icelandic basalts. Earth Planet Sci Lett 37:380–392

    Article  Google Scholar 

  • Lonsdale P (1978) Ecuadorian subduction system. Am Assoc Pet Geol Bull 62:2454–2477

    Google Scholar 

  • Macpherson CG, Dreher ST, Thirlwall MF (2006) Adakites without slab melting: high pressure differentiation of island arc magma, Mindanao, the Philippines. Earth Planet Sci Lett 243:581–593

    Article  Google Scholar 

  • Martin H (1988) Archaean and modern granitoids as indicators of changes in geodynamic processes. Rev Brasil Geocienc 17:360–365

    Google Scholar 

  • Martin H, Smithies RH, Rapp R, Moyen J-F, Champion D (2005) An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos 79:1–24

    Article  Google Scholar 

  • McCulloch MT, Gamble JA (1991) Geochemical and geodynamical constraints on subduction zone magmatism. Earth Planet Sci Lett 102:358–374

    Article  Google Scholar 

  • Monzier M, Robin C, Hall ML, Cotten J, Mothes P, Eissen J-P, Samaniego P (1997) Les adakites d’Equateur: modèle préliminaire. CR Acad Sci 324:545–552

    Google Scholar 

  • Monzier M, Samaniego P, Robin C, Beate B, Cotten J, Hall ML, Mothes P, Andrade D, Bourdon E, Eissen J-P, Le Pennec J-L, Ruiz AG, Toulkeridis T (2002) Evolution of the Pichincha Volcanic Complex (Ecuador), Extended abstracts volume of the 5th international symposium on andean geodynamics, Toulouse—France, pp 429–432

  • Müntener O, Ulmer P (2006) Experimentally derived high-pressure cumulates from hydrous arc magmas and consequences for the seismic velocity structure of lower arc crust. Geophys Res Lett 33:L21308. doi:10.1029/2006GL027629

    Article  Google Scholar 

  • Mysen BO, Kushiro I, Nicholls IA, Ringwood AE (1974) A possible mantle origin for andesite magmas: discussion and replies. Earth Planet Sci Lett 21:221–229

    Article  Google Scholar 

  • Nicholls IA, Ringwood AE (1972) Production of silica-saturated tholeiitic magmas in island arcs. Earth Planet Sci Lett 17:243–246

    Article  Google Scholar 

  • Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu Area, Northern Turkey. Contrib Miner Petrol 58:63–81

    Article  Google Scholar 

  • Rapp RP, Watson EB, Miller CF (1991) Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalities. Precamb Res 51:1–25

    Article  Google Scholar 

  • Rapp RP, Shimizu N, Norman MD, Applegate GS (1999) Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa. Chem Geol 160:335–356

    Article  Google Scholar 

  • Rollinson H (1993) Using geochemical data: evaluation, presentation, interpretation, Longman, London, 352 pp

  • Rudnick RL, Fountain DM (1995) Nature and composition of the continental crust: a lower crustal perspective. Rev Geophys 33:267–309

    Article  Google Scholar 

  • Rudnick RL, Gao S (2003) The composition of the continental crust. In: Rudnick RL (ed) The crust: treatise on geochemistry 3 Holland HD, and Turekian KK (eds) Elsevier, Oxford, pp 1–64

  • Sakuyama M (1981) Petrological study of the Myoko and Kurohime volcanoes, Japan: crystallization sequence and evidence for magma mixing. J Petrol 22:553–583

    Google Scholar 

  • Samaniego P, Martin H, Robin C, Monzier M (2002) Transition from calc-alkalic to adakitic magmatism at Cayambe volcano, Ecuador: insights into slab melts and mantle wedge interactions. Geology 30:967–970

    Article  Google Scholar 

  • Samaniego P, Martin H, Monzier M, Robin C, Fornari M, Eissen J-P, Cotten J (2005) Temporal evolution of magmatism in the Northern Volcanic Zone of the Andes: the geology and petrology of Cayambe volcanic complex (Ecuador). J Petrol 46:2225–2252

    Article  Google Scholar 

  • Schiano P, Clochiatti R, Shimizu N, Maury RC, Jochum KP, Hofmann AW (1995) Hydrous silica-rich melts in the sub-arc mantle and their relationship with erupted arc lavas. Nature 377:595–600

    Article  Google Scholar 

  • Schiano P, Clocchiatti R, Boivin P, Médard E (2004) The nature of melt inclusions inside minerals in ultramafic cumulates from island arcs (Adak volcanic Center, Aleutian arc): Implications for the origin of high-Al basalts. Chem Geol 203:169–179

    Article  Google Scholar 

  • Sen C, Dunn T (1994) Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 Gpa: implications for the origin of adakites. Contrib Miner Petrol 117:394–409

    Article  Google Scholar 

  • Sisson TW, Grove TL (1993) Experimental investigations of the role of water in calc-alkaline differentiation and subduction zone magmatism. Contrib Miner Petrol 113:143–166

    Article  Google Scholar 

  • Störmer JC, Nicholls J (1978) XLFRAC: a program for interactive testing of magmatic differentiation models. Comput Geosci 4:143–159

    Article  Google Scholar 

  • Tatsumi Y, Hamilton DL, Nesbitt RW (1986) Chemical characteristics of the fluid phase released from a subducted lithosphere and the origin of arc magmas: evidence from high pressure experiments and natural rocks. J Volcanol Geotherm Res 29:293–309

    Article  Google Scholar 

  • Treuil M, Joron J-L (1975) Utilisation des elements hygromagmatophiles pour la simplification de la modélisation quantitative des processus magmatiques: exemples de l’Afar et de la dorsale médio-atlantique. Soc Ital Miner Petrol 31:125–174

    Google Scholar 

  • Van Thournout F, Hertogen J, Quevedo L (1992) Allochthonous terranes in northwestern Ecuador. Tectonophysics 205:101–116

    Google Scholar 

  • Yoder HS, Tilley CE (1962) Origin of basalt magmas: an experimental study of natural and synthetic rock systems. J Petrol 3:342–532

    Google Scholar 

  • Yogodzinski GM, Kay RW, Volynets ON, Koloskov AV, Kay SM (1995) Magnesian andesite in the western Aleutian Komandorsky region: implications for slab melting and processes in the mantle wedge. Geol Soc Amer Bull 107:505–519

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank P. Samaniego for critical reading of the manuscript, two anonymous referees for constructive reviews and T. L. Grove for editorial handling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Schiano.

Additional information

Communicated by T. L. Grove.

Dedicated to the memory of Michel Monzier and Jean-Philippe Eissen, who passed away on September 2004 and March 2007, respectively.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 25.5 kb)

Supplementary material 2 (XLS 421 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schiano, P., Monzier, M., Eissen, JP. et al. Simple mixing as the major control of the evolution of volcanic suites in the Ecuadorian Andes. Contrib Mineral Petrol 160, 297–312 (2010). https://doi.org/10.1007/s00410-009-0478-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-009-0478-2

Keywords

Navigation