[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Investigations on enhanced Fischer–Burmeister NCP functions: application to a rate-dependent model for ferroelectrics

  • Special
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This contribution deals with investigations on enhanced Fischer–Burmeister nonlinear complementarity problem (NCP) functions applied to a rate-dependent laminate-based material model for ferroelectrics. The framework is based on the modelling and parametrisation of the material’s microstructure via laminates together with the respective volume fractions. These volume fractions are treated as internal-state variables and are subject to several inequality constraints which can be treated in terms of Karush–Kuhn–Tucker conditions. The Fischer–Burmeister NCP function provides a sophisticated scheme to incorporate Karush–Kuhn–Tucker-type conditions into calculations of internal-state variables. However, these functions are prone to numerical instabilities in their original form. Therefore, some enhanced formulations of the Fischer–Burmeister ansatz are discussed and compared to each other in this contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Bartel, T., Hackl, K.: A micromechanical model for martensitic phase-transformations in shape-memory alloys based on energy-relaxation. Z. für Angew. Math. Mech. 89(10), 792–809 (2009)

    Article  MATH  Google Scholar 

  2. Bartel, T., Menzel, A., Svendsen, B.: Thermodynamic and relaxation-based modeling of the interaction between martensitic phase transformations and plasticity. J. Mech. Phys. Solids 59(5), 1004–1019 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bhattacharya, K.: Comparison of the geometrically nonlinear and linear theories of martensitic transformation. Contin. Mech. Thermodyn. 5(3), 205–242 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, B., Chen, X., Kanzow, C.: A penalized Fischer–Burmeister NCP-function. Math. Program. 88, 211–216 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, J.S.: On some NCP-functions based on the generalized Fischer–Burmeister function. Asia Pac. J. Oper. Res. 24, 401–420 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, J.S., Pan, S.: A family of NCP functions and a descent method for the nonlinear complementarity problem. Asia Pac. J. Oper. Res. 24, 401–420 (2007)

    Article  MathSciNet  Google Scholar 

  7. Dusthakar, D.K., Menzel, A., Svendsen, B.: Comparison of phenomenological and laminate-based models for rate-dependent switching in ferroelectric continua. GAMM-Mitteilungen 38(1), 147–170 (2015)

    Article  MathSciNet  Google Scholar 

  8. Dusthakar, D.K., Menzel, A., Svendsen, B.: Laminate-based modelling of single and polycrystalline ferroelectric materials—application to tetragonal barium titanate. Mech. Mater. 117, 235–254 (2018)

    Article  Google Scholar 

  9. Engelke, S., Kanzow, C.: Predictor-corrector smoothing methods for linear programs with a more flexible update of the smoothing parameter. Comput. Optim. Appl. 23, 299–320 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fischer, A.: A special Newton-type optimization method. Optimization 24(3–4), 269–284 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Huber, J.E.: Micromechanical modelling of ferroelectrics. Curr. Opin. Solid State Mater. Sci. 9(3), 100–106 (2005)

    Article  Google Scholar 

  12. Hwang, S.C., Lynch, C.S., McMeeking, R.M.: Ferroelectric/ferroelastic interactions and a polarization switching model. Acta Metall. Mater. 43(5), 2073–2084 (1995)

    Article  Google Scholar 

  13. Jaffe, B., Cook, W.R., Jaffe, H.: Piezoelectric Ceramics. Academic Press, Cambridge (1971)

    Google Scholar 

  14. Kalpakides, V., Arvanitakis, A.: A level set approach to domain wall kinetics and domain patterning in elastic ferroelectrics. Comput. Methods Appl. Mech. Eng. 199, 2865–2875 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kamlah, M.: Ferroelectric and ferroelastic piezoceramics—modeling of electromechanical hysteresis phenomena. Contin. Mech. Thermodyn. 13(4), 219–268 (2001)

    Article  MATH  Google Scholar 

  16. Kanzow, C.: Some noninterior continuation methods for linear complementarity problems. SIAM J. Matrix Anal. Appl. 17(4), 851–868 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kiefer, B., Bartel, T., Menzel, A.: Implementation of numerical integration schemes for the simulation of magnetic SMA constitutive response. Smart Mater. Struct. 21(9), 094007 (2012)

    Article  Google Scholar 

  18. Li, J.Y., Lei, C.H., Li, L.J., Shu, Y.C., Liu, Y.Y.: Unconventional phase field simulations of transforming materials with evolving microstructures. Acta Mech. Sin. 28(4), 915–927 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, J.Y., Liu, D.: On ferroelectric crystals with engineered domain configurations. J. Mech. Phys. Solids 52(8), 1719–1742 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, Y.W., Li, F.X.: The effect of domain patterns on \(180_{}^{\circ }\) domain switching in BaTiO\(_3^{}\) crystals during antiparallel electric field loading. Appl. Phys. Lett. 104(4), 042908–042911 (2014)

    Article  Google Scholar 

  21. Lynch, C.S.: On the development of multiaxial phenomenological constitutive laws for ferroelectric ceramics. J. Intell. Mater. Syst. Struct. 9(7), 555–563 (1998)

    Article  Google Scholar 

  22. Miehe, C., Rosato, D.: A rate-dependent incremental variational formulation of ferroelectricity. Int. J. Eng. Sci. 49(6), 466–496 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Miehe, C., Rosato, D., Kiefer, B.: Variational principles in dissipative electro-magneto-mechanics: a framework for the macro-modeling of functional materials. International Journal for Numerical Methods in Engineering 86(10), 1225–1276 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Miehe, C., Zäh, D., Rosato, D.: Variational-based modeling of micro-electro-elasticity with electric field-driven and stress-driven domain evolutions. Int. J. Numer. Methods Eng. 91(2), 115–141 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Schmidt-Baldassari, M.: Numerical concepts for rate-independent single crystal plasticity. Comput. Methods Appl. Mech. Eng. 192(11), 1261–1280 (2003)

    Article  MATH  Google Scholar 

  26. Schrade, D., Mueller, R., Xu, B.X., Gross, D.: Domain evolution in ferroelectric materials: a continuum phase field model and finite element implementation. Comput. Methods Appl. Mech. Eng. 196(41), 4365–4374 (2007)

    Article  MATH  Google Scholar 

  27. Schröder, J., Romanowski, H.: A thermodynamically consistent mesoscopic model for transversely isotropic ferroelectric ceramics in a coordinate-invariant setting. Arch. Appl. Mech. 74(11–12), 863–877 (2005)

    Article  MATH  Google Scholar 

  28. Shu, Y.C., Bhattacharya, K.: Domain patterns and macroscopic behaviour of ferroelectric materials. Philos. Mag. Part B 81(12), 2021–2054 (2001)

    Article  Google Scholar 

  29. Smith, R.C.: Smart Material Systems—Model Development. SIAM, Philadelphia (2005)

    Book  MATH  Google Scholar 

  30. Sun, D., Qi, L.: On NCP-functions. Comput. Optim. Appl. 13, 201–220 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sun, D., Womersley, R.S.: A new unconstrained differentiable merit function for box constrained variational inequality problems and a damped Gauss–Newton method. SIAM J. Optim. 9(2), 388–413 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tsou, N.T., Huber, J.E.: Compatible domain structures and the poling of single crystal ferroelectrics. Mech. Mater. 42(7), 740–753 (2010)

    Article  Google Scholar 

  33. Tsou, N.T., Huber, J.E., Cocks, A.C.F.: Evolution of compatible laminate domain structures in ferroelectric single crystals. Acta Mater. 61(2), 670–682 (2013)

    Article  Google Scholar 

  34. Yen, J.H., Shu, Y.C., Shieh, J., Yeh, J.H.: A study of electromechanical switching in ferroelectric single crystals. J. Mech. Phys. Solids 56(6), 2117–2135 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The financial support of the German Research Foundation (DFG) of the research group FOR 1509, “Ferroic Functional Materials: Multi-scale Modeling and Experimental Characterization” in projects P6 “Microstructural Interactions and Switching in Ferroelectrics” and P7 “Numerical Relaxation Techniques for the Modeling of Microstructure Evolution in Multifunctional Magnetic Materials” is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Bartel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Derivation of the smoothed Fischer–Burmeister NCP function

Derivation of the smoothed Fischer–Burmeister NCP function

The roots of the original NCP function need to be solved in an approximative manner for the smoothed Fischer–Burmeister NCP approach. Thus, the perturbation parameter \(\delta \) controls the accuracy and the equality constraint to be solved. The corresponding derivation of the smoothed Fischer–Burmeister function provided that \(r\ge 0\) and \(\varGamma \ge 0\) reads as follows

$$\begin{aligned} r\,\varGamma= & {} \delta ^2 \end{aligned}$$
(50)
$$\begin{aligned} 2\,r\,\varGamma= & {} 2\,\delta ^2 \end{aligned}$$
(51)
$$\begin{aligned} r^2+\varGamma ^2+2\,r\,\varGamma= & {} r^2+\varGamma ^2+2\,\delta ^2 \end{aligned}$$
(52)
$$\begin{aligned} \left[ r+\varGamma \right] ^2= & {} r^2+\varGamma ^2+2\,\delta ^2 \end{aligned}$$
(53)
$$\begin{aligned} r+\varGamma= & {} \sqrt{r^2+\varGamma ^2+2\,\delta ^2} \end{aligned}$$
(54)
$$\begin{aligned} 0= & {} \sqrt{r^2+\varGamma ^2+2\,\delta ^2} - \left[ r+\varGamma \right] \end{aligned}$$
(55)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bartel, T., Schulte, R., Menzel, A. et al. Investigations on enhanced Fischer–Burmeister NCP functions: application to a rate-dependent model for ferroelectrics. Arch Appl Mech 89, 995–1010 (2019). https://doi.org/10.1007/s00419-018-1466-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-018-1466-7

Keywords

Navigation