Abstract
Homer1, a scaffolding protein of the postsynaptic density (PSD), enriched at excitatory synapses is known to anchor and modulate group I metabotropic glutamate receptors (mGluRs) and different channel- and receptor-proteins. Homer proteins are expressed in neurons of different brain regions, but also in non-neuronal tissues like skeletal muscle. Occurrence and location of Homer1 and mGluR5 in myenteric plexus and neuromuscular junctions (NMJ) of rat esophagus have yet not been characterized. We located Homer1 and mGluR5 immunoreactivity (-iry) in rat esophagus and focused on myenteric neurons, intraganglionic laminar endings (IGLEs) and NMJs, using double- and triple-label immunohistochemistry and confocal laser scanning microscopy. Homer1-iry was found in a subpopulation of vesicular glutamate transporter 2 (VGLUT2) positive IGLEs and cholinergic varicosities within myenteric ganglia, but neither in nitrergic nor cholinergic myenteric neuronal cell bodies. Homer1-iry was detected in 63% of esophageal and, for comparison, in 35% of sternomastoid NMJs. Besides the location in the PSD, Homer1-iry colocalized with cholinergic markers, indicating a presynaptic location in coarse VAChT/CGRP/NF200- immunoreactive (-ir) terminals of nucleus ambiguus neurons supplying striated esophageal muscle. mGluR5-iry was found in subpopulations of myenteric neuronal cell bodies, VGLUT2-ir IGLEs and cholinergic varicosities within the myenteric neuropil and NMJs of esophagus and sternomastoid muscles. Thus, Homer1 may anchor mGluR5 at presynaptic sites of cholinergic boutons at esophageal motor endplates, in a small subpopulation of VGLUT2-ir IGLEs and cholinergic varicosities within myenteric ganglia possibly modulating Ca2+-currents and neurotransmitter release.
Similar content being viewed by others
Abbreviations
- αBT:
-
α-Bungarotoxin
- AMPA:
-
α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor
- BSA:
-
Bovine serum albumin
- CC:
-
Coiled-coil
- CGRP:
-
Calcitonin gene-related peptide
- ChAT:
-
Choline acetyltransferase
- ENS:
-
Enteric nervous system
- GFAP:
-
Glial fibrillary acidic protein
- IEG:
-
Immediate early gene
- IGLE:
-
Intraganglionic laminar ending
- i.p.:
-
Intraperitoneal
- IP3:
-
Inositol-1,4,5-triphosphate
- -ir:
-
Immunoreactive
- -iry:
-
Immunoreactivity
- MEP:
-
Motor endplate
- mGluR1α:
-
Metabotropic glutamate receptor 1α
- mGluR5:
-
Metabotropic glutamate receptor 5
- NF200:
-
Neurofilament 200
- NFAT:
-
Nuclear factor of activated T-cells
- nNOS:
-
Neuronal nitric oxide synthase
- NMDA:
-
N-methyl-d-aspartat
- NMJ:
-
Neuromuscular junction
- ProSAP2:
-
Proline-rich synapse-associated protein-2
- PSD:
-
Postsynaptic density
- RyR1/2:
-
Ryanodine receptor type 1/2
- SIBs:
-
Single-IGLE boutons
- TBS:
-
Tris-buffered saline
- TRPC:
-
Transient receptor potential cation channel
- VAChT:
-
Vesicular acetylcholine transporter
- VesL-1:
-
VASP/Ena-related gene upregulated during seizure and long-term potentiation
- VGLUT2:
-
Vesicular glutamate transporter 2
References
Ayala R, Kett LR, Leach TL, Young AB, Dunah AW, Orlando LR (2012) Metabotropic glutamate receptor 1 (mGluR1): antibody specificity and receptor expression in cultured primary neurons. J Neurosci Methods 204(2):221–226. doi:10.1016/j.jneumeth.2011.11.014
Berthoud HR, Patterson LM, Neumann F, Neuhuber WL (1997) Distribution and structure of vagal afferent intraganglionic laminar endings (IGLEs) in the rat gastrointestinal tract. Anat Embryol (Berl) 195(2):183–191
Bewick GS, Reid B, Richardson C, Banks RW (2005) Autogenic modulation of mechanoreceptor excitability by glutamate release from synaptic-like vesicles: evidence from the rat muscle spindle primary sensory ending. J Physiol 562(Pt 2):381–394. doi:10.1113/jphysiol.2004.074799
Bhave G, Karim F, Carlton SM, Gereau RWt (2001) Peripheral group I metabotropic glutamate receptors modulate nociception in mice. Nat Neurosci 4(4):417–423. doi:10.1038/86075
Böckers TM (2006) The postsynaptic density. Cell Tissue Res 326(2):409–422
Böckers TM, Winter C, Smalla KH, Kreutz MR, Bockmann J, Seidenbecher C, Garner CC, Gundelfinger ED (1999) Proline-rich synapse-associated proteins ProSAP1 and ProSAP2 interact with synaptic proteins of the SAPAP/GKAP family. Biochem Biophys Res Commun 264(1):247–252
Bockmann J, Kreutz MR, Gundelfinger ED, Böckers TM (2002) ProSAP/Shank postsynaptic density proteins interact with insulin receptor tyrosine kinase substrate IRSp53. J Neurochem 83(4):1013–1017
Brakeman PR, Lanahan AA, O’Brien R, Roche K, Barnes CA, Huganir RL, Worley PF (1997) Homer: a protein that selectively binds metabotropic glutamate receptors. Nature 386(6622):284–288. doi:10.1038/386284a0
Brandstätter JH, Dick O, Böckers TM (2004) The postsynaptic scaffold proteins ProSAP1/Shank2 and Homer1 are associated with glutamate receptor complexes at rat retinal synapses. J Comp Neurol 475(4):551–563
Dütsch M, Eichhorn U, Wörl J, Wank M, Berthoud HR, Neuhuber WL (1998) Vagal and spinal afferent innervation of the rat esophagus: a combined retrograde tracing and immunocytochemical study with special emphasis on calcium-binding proteins. J Comp Neurol 398(2):289–307
Ehrengruber M, Kato A, Inokuchi K, Hennou S (2004) Homer/vesl proteins and their roles in CNS neurons. Mol Neurobiol 29(3):213–227. doi:10.1385/MN:29:3:213
Ewald P, Neuhuber WL, Raab M (2006) Vesicular glutamate transporter 1 immunoreactivity in extrinsic and intrinsic innervation of the rat esophagus. Histochem Cell Biol 125(4):377–395
Feng W, Tu J, Yang T, Vernon PS, Allen PD, Worley PF, Pessah IN (2002) Homer regulates gain of ryanodine receptor type 1 channel complex. J Biol Chem 277(47):44722–44730. doi:10.1074/jbc.M207675200
Foa L, Gasperini R (2009) Developmental roles for Homer: more than just a pretty scaffold. J Neurochem 108(1):1–10. doi:10.1111/j.1471-4159.2008.05726.x
Giaroni C, Zanetti E, Chiaravalli AM, Albarello L, Dominioni L, Capella C, Lecchini S, Frigo G (2003) Evidence for a glutamatergic modulation of the cholinergic function in the human enteric nervous system via NMDA receptors. Eur J Pharmacol 476(1–2):63–69
Hayashi MK, Tang C, Verpelli C, Narayanan R, Stearns MH, Xu R-M, Li H, Sala C, Hayashi Y (2009) The postsynaptic density proteins Homer and Shank form a polymeric network structure. Cell 137(1):159–171. doi:10.1016/j.cell.2009.01.050
Horling L, Neuhuber WL, Raab M (2012) Pitfalls using tyramide signal amplification (TSA) in the mouse gastrointestinal tract: endogenous streptavidin-binding sites lead to false positive staining. J Neurosci Methods 204(1):124–132. doi:10.1016/j.jneumeth.2011.11.009
Huang G, Kim JY, Dehoff M, Mizuno Y, Kamm KE, Worley PF, Muallem S, Zeng W (2007) Ca2+ signaling in microdomains: Homer1 Mediates The Interaction Between RyR2 and Cav1.2 to regulate excitation-contraction coupling. J Biol Chem 282(19):14283–14290. doi:10.1074/jbc.M611529200
Huang GN, Huso DL, Bouyain S, Tu J, McCorkell KA, May MJ, Zhu Y, Lutz M, Collins S, Dehoff M, Kang S, Whartenby K, Powell J, Leahy D, Worley PF (2008) NFAT binding and regulation of T cell activation by the cytoplasmic scaffolding Homer proteins. Science 319(5862):476–481. doi:10.1126/science.1151227
Hwang S-Y, Wei J, Westhoff JH, Duncan RS, Ozawa F, Volpe P, Inokuchi K, Koulen P (2003) Differential functional interaction of two Vesl/Homer protein isoforms with ryanodine receptor type 1: a novel mechanism for control of intracellular calcium signaling. Cell Calcium 34(2):177–184. doi:10.1016/S0143-4160(03)00082-4
Jensen J, Lehmann A, Uvebrant A, Carlsson A, Jerndal G, Nilsson K, Frisby C, Blackshaw LA, Mattsson JP (2005) Transient lower esophageal sphincter relaxations in dogs are inhibited by a metabotropic glutamate receptor 5 antagonist. Eur J Pharmacol 519(1–2):154–157. doi:10.1016/j.ejphar.2005.07.007
Kammermeier PJ, Xiao B, Tu JC, Worley PF, Ikeda SR (2000) Homer proteins regulate coupling of group I metabotropic glutamate receptors to N-type calcium and M-type potassium channels. J Neurosci 20(19):7238–7245
Kato A, Ozawa F, Saitoh Y, Fukazawa Y, Sugiyama H, Inokuchi K (1998) Novel members of the Vesl/Homer family of PDZ proteins that bind metabotropic glutamate receptors. J Biol Chem 273(37):23969–23975. doi:10.1074/jbc.273.37.23969
Kennedy MB (1997) The postsynaptic density at glutamatergic synapses. Trends Neurosci 20(6):264–268
Kennedy MB (2000) Signal-processing machines at the postsynaptic density. Science 290(5492):750–754. doi:10.1126/science.290.5492.750
Kestler C, Neuhuber W, Raab M (2009) Distribution of P2X3 receptor immunoreactivity in myenteric ganglia of the mouse esophagus. Histochem Cell Biol 131:13–27. doi:10.1007/s00418-008-0498-4 doi
Kirchgessner AL (2001) Glutamate in the enteric nervous system. Curr Opin Pharmacol 1(6):591–596
Kirchgessner AL, Liu MT, Alcantara F (1997) Excitotoxicity in the enteric nervous system. J Neurosci 17(22):8804–8816
König S (2012) Lokalisation und Verteilung von GluR2/3-Rezeptorimmunität im Ösophagus der Maus. Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen
Kraus T, Neuhuber WL, Raab M (2004) Vesicular glutamate transporter 1 immunoreactivity in motor endplates of striated esophageal but not skeletal muscles in the mouse. Neurosci Lett 360(1–2):53–56
Kraus T, Neuhuber WL, Raab M (2007) Distribution of vesicular glutamate transporter 1 (VGLUT1) in the mouse esophagus. Cell Tissue Res 329(2):205–219
Liou HC, Yang RS, Fu WM (1996) Potentiation of spontaneous acetylcholine release from motor nerve terminals by glutamate in Xenopus tadpoles. Neuroscience 75(1):325–331
Liu M, Kirchgessner AL (2000) Agonist- and reflex-evoked internalization of metabotropic glutamate receptor 5 in enteric neurons. J Neurosci 20(9):3200–3205
Liu MT, Rothstein JD, Gershon MD, Kirchgessner AL (1997) Glutamatergic enteric neurons. J Neurosci 17(12):4764–4784
Mann PT, Southwell BR, Young HM, Furness JB (1997) Appositions made by axons of descending interneurons in the guinea-pig small intestine, investigated by confocal microscopy. J Chem Neuroanat 12(3):151–164
Marvizón JCG, Pérez OA, Song B, Chen W, Bunnett NW, Grady EF, Todd AJ (2007) Calcitonin receptor-like receptor and receptor activity modifying protein 1 in the rat dorsal horn: localization in glutamatergic presynaptic terminals containing opioids and adrenergic α2 C receptors. Neuroscience 148(1):250–265. doi:10.1016/j.neuroscience.2007.05.036
McCool BA, Pin J-P, Harpold MM, Brust PF, Stauderman KA, Lovinger DM (1998) Rat group I metabotropic glutamate receptors inhibit neuronal Ca2+ channels via multiple signal transduction pathways in HEK 293 cells. J Neurophysiol 79(1):379–391
McRoberts JA, Coutinho SV, Marvizon JC, Grady EF, Tognetto M, Sengupta JN, Ennes HS, Chaban VV, Amadesi S, Creminon C, Lanthorn T, Geppetti P, Bunnett NW, Mayer EA (2001) Role of peripheral N-methyl-d-aspartate (NMDA) receptors in visceral nociception in rats. Gastroenterology 120(7):1737–1748
Nepliouev I, Zhang Z-S, Stiber JA (2011) Effect of oxidative stress on Homer scaffolding proteins. PloS One 6(10):e26128. doi:10.1371/journal.pone.0026128
Neuhuber WL (1987) Sensory vagal innervation of the rat esophagus and cardia: a light and electron microscopic anterograde tracing study. J Auton Nerv Syst 20(3):243–255
Neuhuber WL, Clerc N (1990) Afferent innervation of the esophagus in cat and rat. In: Zenker W, Neuhuber WL. (eds) The primary afferent neuron. Plenum Press, New York, pp 93–107
Neuhuber WL, Wörl J (2016) Enteric co-innervation of striated muscle in the esophagus: still enigmatic? Histochem Cell Biol 146(6):721–735. doi:10.1007/s00418-016-1500-1
Neuhuber WL, Wörl J, Berthoud HR, Conte B (1994) NADPH-diaphorase-positive nerve fibers associated with motor endplates in the rat esophagus: new evidence for co-innervation of striated muscle by enteric neurons. Cell Tissue Res 276(1):23–30
Nonidez JF (1946) Afferent nerves in the intermuscular plexus of the dog’s oesophagus. J Comp Neurol 85:177–189
O’Brien RJ, Lau L-F, Huganir RL (1998) Molecular mechanisms of glutamate receptor clustering at excitatory synapses. Curr Opin Neurobiol 8(3):364
Page AJ, Young RL, Martin CM, Umaerus M, O’Donnell TA, Cooper NJ, Coldwell JR, Hulander M, Mattsson JP, Lehmann A, Blackshaw LA (2005) Metabotropic glutamate receptors inhibit mechanosensitivity in vagal sensory neurons. Gastroenterology 128(2):402–410
Pouliquin P, Pace S, Dulhunty A (2009) In vitro modulation of the cardiac ryanodine receptor activity by Homer1. Pflugers Arch Eur J Physiol 458(4):723–732. doi:10.1007/s00424-009-0664-0
Powley TL, Wang XY, Fox EA, Phillips RJ, Liu LWC, Huizinga JD (2008) Ultrastructural evidence for communication betweenbintramuscular vagal mechanoreceptors and interstitial cells of Cajal in the rat fundus. Neurogastroenterol Motil 20:69–79. doi:10.1111/j.1365-2982.2007.00990.x
Raab M, Neuhuber WL (2003) Vesicular glutamate transporter 2 immunoreactivity in putative vagal mechanosensor terminals of mouse and rat esophagus: indication of a local effector function? Cell Tissue Res 312(2):141–148
Raab M, Neuhuber WL (2004) Intraganglionic laminar endings and their relationships with neuronal and glial structures of myenteric ganglia in the esophagus of rat and mouse. Histochem Cell Biol 122(5):445–459
Raab M, Neuhuber WL (2005) Number and distribution of intraganglionic laminar endings in the mouse esophagus as demonstrated with two different immunohistochemical markers. J Histochem Cytochem 53(8):1023–1031
Raab M, Neuhuber WL (2007) Glutamatergic functions of primary afferent neurons with special emphasis on vagal afferents. Int Rev Cytol 256:223–275
Raab M, Boeckers TM, Neuhuber WL (2010) Proline-rich synapse-associated protein-1 and 2 (ProSAP1/Shank2 and ProSAP2/Shank3)–scaffolding proteins are also present in postsynaptic specializations of the peripheral nervous system. Neuroscience 171(2):421–433. doi:10.1016/j.neuroscience.2010.08.041
Roche KW, Tu JC, Petralia RS, Xiao B, Wenthold RJ, Worley PF (1999) Homer 1b regulates the trafficking of group I metabotropic glutamate receptors. J Biol Chem 274(36):25953–25957. doi:10.1074/jbc.274.36.25953
Rodrigo J, Hernandez J, Vidal MA, Pedrosa JA (1975) Vegetative innervation of the esophagus. II. Intraganglionic laminar endings. Acta Anat 92:79–100
Rodrigo J, de Felipe J, Robles-Chillida EM, Perez Anton JA, Mayo I, Gomez A (1982) Sensory vagal nature and anatomical access paths to esophagus laminar nerve endings in myenteric ganglia. Determination by surgical degeneration methods. Acta Anat (Basel) 112 (1):47–57
Rohof WO, Aronica E, Beaumont H, Troost D, Boeckxstaens GE (2012) Localization of mGluR5, GABAB, GABAA, and cannabinoid receptors on the vago-vagal reflex pathway responsible for transient lower esophageal sphincter relaxation in humans: an immunohistochemical study. Neurogastroenterol Motil 24(4):383–173. doi:10.1111/j.1365-2982.2011.01868.x
Salanova M, Bortoloso E, Schiffl G, Gutsmann M, Belavý DL, Felsenberg D, Furlan S, Volpe P, Blottner D (2011) Expression and regulation of Homer in human skeletal muscle during neuromuscular junction adaptation to disuse and exercise. FASEB J 25(12):4312–4325. doi:10.1096/fj.11-186049
Salanova M, Volpe P, Blottner D (2013) Homer protein family regulation in skeletal muscle and neuromuscular adaptation. IUBMB Life 65(9):769–776. doi:10.1002/iub.1198
Sandonà D, Tibaldo E, Volpe P (2000) Evidence for the presence of two Homer 1 transcripts in skeletal and cardiac muscles. Biochem Biophys Res Commun 279(2):348–353. doi:10.1006/bbrc.2000.3948
Sang Q, Young HM (1998) The origin and development of the vagal and spinal innervation of the external muscle of the mouse esophagus. Brain Res 809(2):253–268
Schwartz NE, Alford S (2000) Physiological activation of presynaptic metabotropic glutamate receptors increases intracellular calcium and glutamate release. J Neurophysiol 84(1):415–427
Shiraishi-Yamaguchi Y, Furuichi T (2007) The Homer family proteins. Genome Biol 8(2):206–206. doi:10.1186/gb-2007-8-2-206
Soloviev M, Ciruela F, Chan W-Y, McIlhinney RAJ (2000a) Molecular characterisation of two structurally distinct groups of human homers, generated by extensive alternative splicing1. J Mol Biol 295(5):1185–1200. doi:10.1006/jmbi.1999.3436
Soloviev MM, Ciruela F, Chan W-Y, McIlhinney RAJ (2000b) Mouse brain and muscle tissues constitutively express high levels of Homer proteins. Eur J Biochem 267(3):634–639. doi:10.1046/j.1432-1327.2000.01078.x
Stiber JA, Tabatabaei N, Hawkins AF, Hawke T, Worley PF, Williams RS, Rosenberg P (2005) Homer modulates NFAT-dependent signaling during muscle differentiation. Dev Biol 287(2):213–224. doi:10.1016/j.ydbio.2005.06.030
Stiber JA, Zhang ZS, Burch J, Eu JP, Zhang S, Truskey GA, Seth M, Yamaguchi N, Meissner G, Shah R, Worley PF, Williams RS, Rosenberg PB (2008) Mice lacking Homer 1 exhibit a skeletal myopathy characterized by abnormal transient receptor potential channel activity. Mol Cell Biol 28(8):2637–2647. doi:10.1128/MCB.01601-07
Tao-Cheng J-H, Thein S, Yang Y, Reese TS, Gallant PE (2014) Homer is concentrated at the postsynaptic density and does not redistribute after acute synaptic stimulation. Neuroscience 266:80–90. doi:10.1016/j.neuroscience.2014.01.066
Tong Q, Kirchgessner AL (2003) Localization and function of metabotropic glutamate receptor 8 in the enteric nervous system. Am J Physiol Gastrointest Liver Physiol 285(5):G992–G1003
Tu JC, Xiao B, Yuan JP, Lanahan AA, Leoffert K, Li M, Linden DJ, Worley PF (1998) Homer binds a novel proline-rich motif and links group 1 metabotropic glutamate receptors with IP3 receptors. Neuron 21(4):717–726. doi:10.1016/S0896-6273(00)80589-9
Tu JC, Xiao B, Naisbitt S, Yuan JP, Petralia RS, Brakeman P, Doan A, Aakalu VK, Lanahan AA, Sheng M, Worley PF (1999) Coupling of mGluR/Homer and PSD-95 complexes by the Shank family of postsynaptic density proteins. Neuron 23(3):583–592
Ulus IH, Buyukuysal RL, Wurtman RJ (1992) N-methyl-d-aspartate increases acetylcholine release from rat striatum and cortex: its effect is augmented by choline. J Pharmacol Exp Ther 261(3):1122–1128
Vyskocil F (2003) Early postdenervation depolarization is controlled by acetylcholine and glutamate via nitric oxide regulation of the chloride transporter. Neurochem Res 28(3–4):575–585
Ward CW, Feng W, Tu J, Pessah IN, Worley PK, Schneider MF (2004) Homer protein increases activation of Ca2 + sparks in permeabilized skeletal muscle. J Biol Chem 279(7):5781–5787
Westhoff JH, Hwang S-Y, Scott Duncan R, Ozawa F, Volpe P, Inokuchi K, Koulen P (2003) Vesl/Homer proteins regulate ryanodine receptor type 2 function and intracellular calcium signaling. Cell Calcium 34(3):261–269. doi:10.1016/S0143-4160(03)00112-X
Wiley JW, Lu YX, Owyang C (1991) Evidence for a glutamatergic neural pathway in the myenteric plexus. Am J Physiol 261(4 Pt 1):G693–G700
Wörl J, Neuhuber WL (2005) Enteric co-innervation of motor endplates in the esophagus: state of the art ten years after. Histochem Cell Biol 123(2):117–130
Wörl J, Mayer B, Neuhuber WL (1994) Nitrergic innervation of the rat esophagus: focus on motor endplates. J Auton Nerv Syst 49(3):227–233
Worley PF, Zeng W, Huang G, Kim JY, Shin DM, Kim MS, Yuan JP, Kiselyov K, Muallem S (2007) Homer proteins in Ca(2+) signaling by excitable and non-excitable cells. Cell Calcium 42(4–5):363–371. doi:10.1016/j.ceca.2007.05.007
Xiao B, Tu JC, Petralia RS, Yuan JP, Doan A, Breder CD, Ruggiero A, Lanahan AA, Wenthold RJ, Worley PF (1998) Homer regulates the association of group 1 metabotropic glutamate receptors with multivalent complexes of homer-related, synaptic proteins. Neuron 21(4):707–716
Yuan JP, Kiselyov K, Shin DM, Chen J, Shcheynikov N, Kang SH, Dehoff MH, Schwarz MK, Seeburg PH, Muallem S, Worley PF (2003) Homer binds TRPC family channels and is required for gating of TRPC1 by IP3 receptors. Cell 114(6):777–789. doi:10.1016/S0092-8674(03)00716-5
Yuan JP, Lee KP, Hong JH, Muallem S (2012) The closing and opening of TRPC channels by Homer1 and STIM1. Acta Physiol (Oxf) 204(2):238–247. doi:10.1111/j.1748-1716.2011.02319.x
Zagorodnyuk VP, Brookes SJ (2000) Transduction sites of vagal mechanoreceptors in the guinea pig esophagus. J Neurosci 20(16):6249–6255
Zagorodnyuk VP, Chen BN, Brookes SJ (2001) Intraganglionic laminar endings are mechano-transduction sites of vagal tension receptors in the guinea-pig stomach. J Physiol 534(Pt 1):255–268
Ziff EB (1997) Enlightening the postsynaptic density. Neuron 19(6):1163–1174
Acknowledgements
The skilful technical assistance of Anita Hecht, Andrea Hilpert, Stefanie Link, Karin Löschner, and Hedwig Symowski is gratefully acknowledged.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors have no competing interests. JZ performed the experiments, analyzed the data, and wrote the article together with MR; WN was involved in the study concept and critical revision of data documentation and the manuscript; MR designed the study and supervised experiments and data analysis. The present work was performed in fulfillment of the requirements for obtaining the degree Dr. med. dent.
Rights and permissions
About this article
Cite this article
Zimmermann, J., Neuhuber, W.L. & Raab, M. Homer1 (VesL-1) in the rat esophagus: focus on myenteric plexus and neuromuscular junction. Histochem Cell Biol 148, 189–206 (2017). https://doi.org/10.1007/s00418-017-1555-7
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00418-017-1555-7