[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Electrophysiological and behavioral effects of frontal transcranial direct current stimulation on cognitive fatigue in multiple sclerosis

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Fatigue is one of the most common and debilitating symptoms affecting patients with multiple sclerosis (MS). Sustained cognitive effort induces cognitive fatigue, operationalized as subjective exhaustion and fatigue-related objective alertness decrements with time-on-task. During prolonged cognitive testing, MS patients show increased simple reaction times (RT) accompanied by lower amplitudes and prolonged latencies of the P300 event-related potential. Previous studies suggested a major role of structural and functional abnormalities in the frontal cortex including a frontal hypo-activation in fatigue pathogenesis. In the present study we investigated the neuromodulatory effect of transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (DLPFC) on objective measures of fatigue-related decrements in cognitive performance in MS patients. P300 during an auditory oddball task and simple reaction times in an alertness test were recorded at baseline, during and after stimulation. Compared to sham, anodal tDCS caused an increase in P300 amplitude that persisted after the end of stimulation and eliminated the fatigue-related increase in RT over the course of a testing session. Our findings demonstrate that anodal tDCS over the left DLPFC can counteract performance decrements associated with fatigue thereby leading to an improvement in the patient’s ability to cope with sustained cognitive demands. This provides causal evidence for the functional relevance of the left DLPFC in fatigue pathophysiology. The results indicate that tDCS-induced modulations of frontal activity can be an effective therapeutic option for the treatment of fatigue-related declines in cognitive performance in MS patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kos D, Kerckhofs E, Nagels G et al (2008) Origin of fatigue in multiple sclerosis: review of the literature. Neurorehabil Neural Repair 22(1):91–100

    Article  CAS  PubMed  Google Scholar 

  2. Lerdal A, Celius EG, Krupp L et al (2007) A prospective study of patterns of fatigue in multiple sclerosis. Eur J Neurol 14(12):1338–1343

    Article  CAS  PubMed  Google Scholar 

  3. Chaudhuri A, Behan PO (2004) Fatigue in neurological disorders. Lancet 363(9413):978–988

    Article  PubMed  Google Scholar 

  4. Flensner G, Landtblom A-M, Soderhamn O et al (2013) Work capacity and health-related quality of life among individuals with multiple sclerosis reduced by fatigue: a cross-sectional study. BMC Public Health 13:224

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kluger BM, Krupp LB, Enoka RM (2013) Fatigue and fatigability in neurologic illnesses: proposal for a unified taxonomy. Neurology 80(4):409–416

    Article  PubMed  PubMed Central  Google Scholar 

  6. Flachenecker P, Kumpfel T, Kallmann B et al (2002) Fatigue in multiple sclerosis: a comparison of different rating scales and correlation to clinical parameters. Mult Scler 8(6):523–526

    Article  CAS  PubMed  Google Scholar 

  7. Barak Y, Achiron A (2006) Cognitive fatigue in multiple sclerosis: findings from a two-wave screening project. J Neurol Sci 245(1–2):73–76

    Article  PubMed  Google Scholar 

  8. Lerdal A, Celius EG, Moum T (2003) Fatigue and its association with sociodemographic variables among multiple sclerosis patients. Mult Scler 9(5):509–514

    Article  CAS  PubMed  Google Scholar 

  9. Harrison AM, dasNair R, Moss-Morris R (2016) Operationalising cognitive fatigability in multiple sclerosis: a Gordian knot that can be cut? Mult Scler 23(13):1682–1696

    Article  PubMed  Google Scholar 

  10. Walker LAS, Berard JA, Berrigan LI et al (2012) Detecting cognitive fatigue in multiple sclerosis: method matters. J Neurol Sci 316(1–2):86–92

    Article  CAS  PubMed  Google Scholar 

  11. Genova HM, Rajagopalan V, DeLuca J et al (2013) Examination of cognitive fatigue in multiple sclerosis using functional magnetic resonance imaging and diffusion tensor imaging. PLoS ONE 8(11):e78811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Aldughmi M, Bruce J, Siengsukon CF (2017) Relationship between fatigability and perceived fatigue measured using the neurological fatigue index in people with multiple sclerosis. Int J MS Care 19(5):232–239

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chalah MA, Riachi N, Ahdab R et al (2017) Effects of left DLPFC versus right PPC tDCS on multiple sclerosis fatigue. J Neurol Sci 372:131–137

    Article  PubMed  Google Scholar 

  14. Claros-Salinas D, Dittmer N, Neumann M et al (2013) Induction of cognitive fatigue in MS patients through cognitive and physical load. Neuropsychol Rehabil 23(2):182–201

    Article  PubMed  Google Scholar 

  15. Bryant D, Chiaravalloti ND, DeLuca J (2004) Objective measurement of cognitive fatigue in multiple sclerosis. Rehabil Psychol 49(2):114–122

    Article  Google Scholar 

  16. Neumann M, Sterr A, Claros-Salinas D et al (2014) Modulation of alertness by sustained cognitive demand in MS as surrogate measure of fatigue and fatigability. J Neurol Sci 340(1–2):178–182

    Article  PubMed  Google Scholar 

  17. Weinges-Evers N, Brandt AU, Bock M et al (2010) Correlation of self-assessed fatigue and alertness in multiple sclerosis. Mult Scler 16(9):1134–1140

    Article  PubMed  Google Scholar 

  18. Morrow SA, Rosehart H, Johnson AM (2015) Diagnosis and quantification of cognitive fatigue in multiple sclerosis. Cogn Behav Neurol 28(1):27–32

    Article  PubMed  Google Scholar 

  19. Hanken K, Eling P, Hildebrandt H (2015) Is there a cognitive signature for MS-related fatigue? Mult Scler J 21(4):376–381

    Article  Google Scholar 

  20. Meissner H, Volkert J, König H et al (2007) Fatigue in multiple sclerosis: subjective complaints and intensity of attention. Mult Scler 13:S228

    Google Scholar 

  21. Sur S, Sinha VK (2009) Event-related potential: an overview. Ind Psychiatry J 18(1):70–73

    Article  PubMed  PubMed Central  Google Scholar 

  22. Pokryszko-Dragan A, Zagrajek M, Slotwinski K et al (2016) Event-related potentials and cognitive performance in multiple sclerosis patients with fatigue. Neurol Sci 37:1545–1556

    Article  PubMed  PubMed Central  Google Scholar 

  23. Magnano I, Aiello I, Piras MR (2006) Cognitive impairment and neurophysiological correlates in MS. J Neurol Sci 245(1–2):117–122

    Article  CAS  PubMed  Google Scholar 

  24. Aminoff JC, Goodin DS (2001) Long-latency cerebral event-related potentials in multiple sclerosis. J Clin Neurophysiol 18(4):372–377

    Article  CAS  PubMed  Google Scholar 

  25. Piras MR, Magnano I, Canu ED et al (2003) Longitudinal study of cognitive dysfunction in multiple sclerosis: neuropsychological, neuroradiological, and neurophysiological findings. J Neurol Neurosurg Psychiatry 74(7):878–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chinnadurai SA, Venkatesan SA, Shankar G et al (2016) A study of cognitive fatigue in Multiple Sclerosis with novel clinical and electrophysiological parameters utilizing the event related potential P300. Mult Scler Relat Disord 10:1–6

    Article  PubMed  Google Scholar 

  27. Uetake A, Murata A (2000) Assessment of mental fatigue during VDT task using event-related potential (P300). Robot Hum Commun—Proc IEEE Int Work. https://doi.org/10.1109/ROMAN.2000.892501

    Google Scholar 

  28. Kaseda Y, Jiang C, Kurokawa K et al (1998) Objective evaluation of fatigue by event-related potentials. J Neurol Sci 158(1):96–100

    Article  CAS  PubMed  Google Scholar 

  29. Guo Z, Chen R, Zhang K et al (2016) The impairing effect of mental fatigue on visual sustained attention under monotonous multi-object visual attention task in long durations: an event-related potential based study. PLoS ONE 11(9):e0163360

    Article  PubMed  PubMed Central  Google Scholar 

  30. Heesen C, Nawrath L, Reich C et al (2006) Fatigue in multiple sclerosis: an example of cytokine mediated sickness behaviour? J Neurol Neurosurg Psychiatry 77(1):34–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chalah MA, Riachi N, Ahdab R et al (2015) Fatigue in multiple sclerosis: neural correlates and the role of non-invasive brain stimulation. Front Cell Neurosci 9:460

    Article  PubMed  PubMed Central  Google Scholar 

  32. Papadopoulou A, Müller-Lenke N, Naegelin Y et al (2013) Contribution of cortical and white matter lesions to cognitive impairment in multiple sclerosis. Mult Scler 19(10):1290–1296

    Article  PubMed  Google Scholar 

  33. Gobbi C, Rocca MA, Riccitelli G et al (2014) Influence of the topography of brain damage on depression and fatigue in patients with multiple sclerosis. Mult Scler 20(2):192–201

    Article  CAS  PubMed  Google Scholar 

  34. Codella M, Rocca MA, Colombo B et al (2002) A preliminary study of magnetization transfer and diffusion tensor MRI of multiple sclerosis patients with fatigue. J Neurol 249(5):535–537

    Article  PubMed  Google Scholar 

  35. Sepulcre J, Masdeu JC, Goni J et al (2009) Fatigue in multiple sclerosis is associated with the disruption of frontal and parietal pathways. Mult Scler 15(3):337–344

    Article  CAS  PubMed  Google Scholar 

  36. Rocca MA, Parisi L, Pagani E et al (2014) Regional but not global brain damage contributes to fatigue in multiple sclerosis. Radiology 273(2):511–520

    Article  PubMed  Google Scholar 

  37. Riccitelli G, Rocca MA, Forn C et al (2011) Voxelwise assessment of the regional distribution of damage in the brains of patients with multiple sclerosis and fatigue. Am J Neuroradiol 32(5):874–879

    Article  CAS  PubMed  Google Scholar 

  38. Roelcke U, Kappos L, Lechner-Scott J et al (1997) Reduced glucose metabolism in the frontal cortex and basal ganglia of multiple sclerosis patients with fatigue: a 18F-fluorodeoxyglucose positron emission tomography study. Neurology 48(6):1566–1571

    Article  CAS  PubMed  Google Scholar 

  39. de la Cruz HM, Ambrosio A, Valsasina P et al (2017) Abnormal functional connectivity of thalamic sub-regions contributes to fatigue in multiple sclerosis. Mult Scler. https://doi.org/10.1177/1352458517717807

    PubMed  Google Scholar 

  40. Pravatà E, Zecca C, Sestieri C et al (2016) Hyperconnectivity of the dorsolateral prefrontal cortex following mental effort in multiple sclerosis patients with cognitive fatigue. Mult Scler 22(13):1665–1675

    Article  PubMed  Google Scholar 

  41. Huolman S, Hämäläinen P, Vorobyev V et al (2011) The effects of rivastigmine on processing speed and brain activation in patients with multiple sclerosis and subjective cognitive fatigue. Mult Scler 17(11):1351–1361

    Article  CAS  PubMed  Google Scholar 

  42. Kuo M-F, Nitsche MA (2012) Effects of transcranial electrical stimulation on cognition. Clin EEG Neurosci 43(3):192–199

    Article  PubMed  Google Scholar 

  43. Ziemann U, Paulus W, Nitsche MA et al (2008) Consensus: motor cortex plasticity protocols. Brain Stimul 1(3):164–182

    Article  PubMed  Google Scholar 

  44. Tecchio F, Cancelli A, Cottone C et al (2015) Brain plasticity effects of neuromodulation against multiple sclerosis fatigue. Front Neurol 6:141

    Article  PubMed  PubMed Central  Google Scholar 

  45. Cancelli A, Cottone C, Giordani A et al (2017) Personalized, bilateral whole-body somatosensory cortex stimulation to relieve fatigue in multiple sclerosis. Mult Scler J. https://doi.org/10.1177/1352458517720528

    Google Scholar 

  46. Ferrucci R, Vergari M, Cogiamanian F et al (2014) Transcranial direct current stimulation (tDCS) for fatigue in multiple sclerosis. NeuroRehabilitation 34(1):121–127

    PubMed  Google Scholar 

  47. Tecchio F, Cancelli A, Cottone C et al (2014) Multiple sclerosis fatigue relief by bilateral somatosensory cortex neuromodulation. J Neurol 261(8):1552–1558

    Article  PubMed  Google Scholar 

  48. Saiote C, Goldschmidt T, Timaus C et al (2014) Impact of transcranial direct current stimulation on fatigue in multiple sclerosis. Restor Neurol Neurosci 32(3):423–436

    PubMed  Google Scholar 

  49. Ayache SS, Palm U, Chalah MA et al (2016) Prefrontal tDCS decreases pain in patients with multiple sclerosis. Front Neurosci 10:147

    Article  PubMed  PubMed Central  Google Scholar 

  50. Charvet LE, Dobbs B, Shaw MT et al (2017) Remotely supervised transcranial direct current stimulation for the treatment of fatigue in multiple sclerosis: results from a randomized, sham-controlled trial. Mult Scler J. https://doi.org/10.1177/1352458517732842

    Google Scholar 

  51. Ayache SS, Lefaucheur J-P, Chalah MA (2017) Long term effects of prefrontal tDCS on multiple sclerosis fatigue: a case study. Brain Stimul 10(5):1001–1002

    Article  PubMed  Google Scholar 

  52. Lefaucheur J-P, Chalah MA, Mhalla A et al (2017) The treatment of fatigue by non-invasive brain stimulation. Clin Neurophysiol 47(2):173–184

    Article  Google Scholar 

  53. Ayache SS, Chalah MA (2017) Fatigue in multiple sclerosis—insights into evaluation and management. Clin Neurophysiol 47(2):139–171

    Article  Google Scholar 

  54. Hanken K, Bosse M, Mohrke K et al (2016) Counteracting fatigue in multiple sclerosis with right parietal anodal transcranial direct current stimulation. Front Neurol 7:154

    Article  PubMed  PubMed Central  Google Scholar 

  55. McDonald WI, Compston A, Edan G et al (2001) Recommended diagnostic criteria for multiple sclerosis: guidelines from the international panel on the diagnosis of multiple sclerosis. Ann Neurol 50(1):121–127

    Article  CAS  PubMed  Google Scholar 

  56. Nitsche MA, Cohen LG, Wassermann EM et al (2008) Transcranial direct current stimulation: state of the art 2008. Brain Stimul 1(3):206–223

    Article  PubMed  Google Scholar 

  57. Mills RJ, Young CA (2008) A medical definition of fatigue in multiple sclerosis. QJM 101(1):49–60

    Article  CAS  PubMed  Google Scholar 

  58. Comi G, Leocani L, Rossi P et al (2001) Physiopathology and treatment of fatigue in multiple sclerosis. J Neurol 248(3):174–179

    Article  CAS  PubMed  Google Scholar 

  59. Woods DL, Wyma JM, Yund EW et al (2015) The effects of repeated testing, simulated malingering, and traumatic brain injury on high-precision measures of simple visual reaction time. Front Hum Neurosci 9:540

    PubMed  PubMed Central  Google Scholar 

  60. Luck SJ, Kappenman ES (eds) (2012) The Oxford handbook of event-related potential components. Oxford Library of Psychology, Oxford University Press, Oxford

    Google Scholar 

  61. Huang WJ, Chen WW, Zhang X (2015) The neurophysiology of P 300—an integrated review. Eur Rev Med Pharmacol Sci 19(8):1480–1488

    PubMed  Google Scholar 

  62. Polich J (2007) Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol 118(10):2128–2148

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kirino E, Belger A, Goldman-Rakic P et al (2000) Prefrontal activation evoked by infrequent target and novel stimuli in a visual target detection task: an event-related functional magnetic resonance imaging study. J Neurosci 20(17):6612–6618

    CAS  PubMed  Google Scholar 

  64. Nitsche MA, Paulus W (2000) Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 527(3):633–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sturm W, deSimone A, Krause BJ et al (1999) Functional anatomy of intrinsic alertness: evidence for a fronto-parietal-thalamic-brainstem network in the right hemisphere. Neuropsychologia 37(7):797–805

    Article  CAS  PubMed  Google Scholar 

  66. Hanken K, Eling P, Hildebrandt H (2014) The representation of inflammatory signals in the brain—a model for subjective fatigue in multiple sclerosis. Front Neurol 5:264

    Article  PubMed  PubMed Central  Google Scholar 

  67. Mattioli F, Bellomi F, Stampatori C et al (2016) Neuroenhancement through cognitive training and anodal tDCS in multiple sclerosis. Mult Scler 22(2):222–230

    Article  PubMed  Google Scholar 

  68. Alonzo A, Brassil J, Taylor JL et al (2012) Daily transcranial direct current stimulation (tDCS) leads to greater increases in cortical excitability than second daily transcranial direct current stimulation. Brain Stimul 5(3):208–213

    Article  PubMed  Google Scholar 

  69. Herlofson K, Kluger BM (2017) Fatigue in Parkinson’s disease. J Neurol Sci 374:38–41

    Article  PubMed  Google Scholar 

  70. Pellicano C, Gallo A, Li X et al (2010) Relationship of cortical atrophy to fatigue in patients with multiple sclerosis. Arch Neurol 67(4):447–453

    Article  PubMed  Google Scholar 

  71. Bisecco A, Caiazzo G, d’Ambrosio A et al (2016) Fatigue in multiple sclerosis: the contribution of occult white matter damage. Mult Scler 22(13):1676–1684

    Article  CAS  PubMed  Google Scholar 

  72. Park CH, Chang WH, Park JY et al (2013) Transcranial direct current stimulation increases resting state interhemispheric connectivity. Neurosci Lett 539:7–10

    Article  CAS  PubMed  Google Scholar 

  73. Keeser D, Meindl T, Bor J et al (2011) Prefrontal transcranial direct current stimulation changes connectivity of resting-state networks during fMRI. J Neurosci 31(43):15284–15293

    Article  CAS  PubMed  Google Scholar 

  74. Krause B, Marquez-Ruiz J, Cohen KR (2013) The effect of transcranial direct current stimulation: a role for cortical excitation/inhibition balance? Front Hum Neurosci 7:602

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to all patients for their involvement. We wish to thank Julian Moritz Kauk for his help in behavioral data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tino Zaehle.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical standards

The study was approved by the local ethics committee of the University Hospital Magdeburg.

Informed consent

Informed consent was obtained from all patients prior to their inclusion in this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fiene, M., Rufener, K.S., Kuehne, M. et al. Electrophysiological and behavioral effects of frontal transcranial direct current stimulation on cognitive fatigue in multiple sclerosis. J Neurol 265, 607–617 (2018). https://doi.org/10.1007/s00415-018-8754-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-018-8754-6

Keywords

Navigation