[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

P66shc and its role in ischemic cardiovascular diseases

  • Invited Review
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Oxidative stress caused by an imbalance in the formation and removal of reactive oxygen species (ROS) plays an important role in the development of several cardiovascular diseases. ROS originate from various cellular origins; however, the highest amount of ROS is produced by mitochondria. One of the proteins contributing to mitochondrial ROS formation is the adaptor protein p66shc, which upon cellular stresses translocates from the cytosol to the mitochondria. In the present review, we focus on the role of p66shc in longevity, in the development of cardiovascular diseases including diabetes, atherosclerosis and its risk factors, myocardial ischemia/reperfusion injury and the protection from it by ischemic preconditioning. Also, the contribution of p66shc towards cerebral pathologies and the potential of the protein as a therapeutic target for the treatment of the aforementioned diseases are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ahmed SBM, Prigent SA (2017) Insights into the Shc family of adaptor proteins. J Mol Signal 12:2. https://doi.org/10.5334/1750-2187-12-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Akhmedov A, Montecucco F, Braunersreuther V, Camici GG, Jakob P, Reiner MF, Glanzmann M, Burger F, Paneni F, Galan K, Pelli G, Vuilleumier N, Belin A, Vallee JP, Mach F, Luscher TF (2015) Genetic deletion of the adaptor protein p66Shc increases susceptibility to short-term ischaemic myocardial injury via intracellular salvage pathways. Eur Heart J 36:516–526a. https://doi.org/10.1093/eurheartj/ehu400

    Article  CAS  PubMed  Google Scholar 

  3. Alavian KN, Beutner G, Lazrove E, Sacchetti S, Park HA, Licznerski P, Li H, Nabili P, Hockensmith K, Graham M, Porter GA Jr, Jonas EA (2014) An uncoupling channel within the c-subunit ring of the F1FO ATP synthase is the mitochondrial permeability transition pore. Proc Natl Acad Sci USA 111:10580–10585. https://doi.org/10.1073/pnas.1401591111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Albiero M, Ciciliot S, Tedesco S, Menegazzo L, D’Anna M, Scattolini V, Cappellari R, Zuccolotto G, Rosato A, Cignarella A, Giorgio M, Avogaro A, Fadini GP (2019) Diabetes-associated myelopoiesis drives stem cell mobilopathy through an OSM-p66Shc signaling pathway. Diabetes. https://doi.org/10.2337/db19-0080

    Article  PubMed  Google Scholar 

  5. Albiero M, Poncina N, Tjwa M, Ciciliot S, Menegazzo L, Ceolotto G, Vigili de Kreutzenberg S, Moura R, Giorgio M, Pelicci P, Avogaro A, Fadini GP (2014) Diabetes causes bone marrow autonomic neuropathy and impairs stem cell mobilization via dysregulated p66Shc and Sirt1. Diabetes 63:1353–1365. https://doi.org/10.2337/db13-0894

    Article  CAS  PubMed  Google Scholar 

  6. Andreadou I, Iliodromitis EK, Rassaf T, Schulz R, Papapetropoulos A, Ferdinandy P (2015) The role of gasotransmitters NO, H2S and CO in myocardial ischaemia/reperfusion injury and cardioprotection by preconditioning, postconditioning and remote conditioning. Br J Pharmacol 172:1587–1606. https://doi.org/10.1111/bph.12811

    Article  CAS  PubMed  Google Scholar 

  7. Asalla S, Girada SB, Kuna RS, Chowdhury D, Kandagatla B, Oruganti S, Bhadra U, Bhadra MP, Kalivendi SV, Rao SP, Row A, Ibrahim A, Ghosh PP, Mitra P (2016) Restoring mitochondrial function: a small molecule-mediated approach to enhance glucose stimulated insulin secretion in cholesterol accumulated pancreatic beta cells. Sci Rep 6:27513. https://doi.org/10.1038/srep27513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Azarashvili T, Odinokova I, Bakunts A, Ternovsky V, Krestinina O, Tyynela J, Saris NE (2014) Potential role of subunit c of F0F1-ATPase and subunit c of storage body in the mitochondrial permeability transition. Effect of the phosphorylation status of subunit c on pore opening. Cell Calcium 55:69–77. https://doi.org/10.1016/j.ceca.2013.12.002

    Article  CAS  PubMed  Google Scholar 

  9. Bashir M, Parray AA, Baba RA, Bhat HF, Bhat SS, Mushtaq U, Andrabi KI, Khanday FA (2014) beta-Amyloid-evoked apoptotic cell death is mediated through MKK6-p66shc pathway. Neuromolecular Med 16:137–149. https://doi.org/10.1007/s12017-013-8268-4

    Article  CAS  PubMed  Google Scholar 

  10. Baysa A, Sagave J, Carpi A, Zaglia T, Campesan M, Dahl CP, Bilbija D, Troitskaya M, Gullestad L, Giorgio M, Mongillo M, Di Lisa F, Vaage JI, Valen G (2015) The p66ShcA adaptor protein regulates healing after myocardial infarction. Basic Res Cardiol 110:13. https://doi.org/10.1007/s00395-015-0470-0

    Article  CAS  PubMed  Google Scholar 

  11. Berniakovich I, Trinei M, Stendardo M, Migliaccio E, Minucci S, Bernardi P, Pelicci PG, Giorgio M (2008) p66Shc-generated oxidative signal promotes fat accumulation. J Biol Chem 283:34283–34293. https://doi.org/10.1074/jbc.M804362200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Boengler K, Bencsik P, Paloczi J, Kiss K, Pipicz M, Pipis J, Ferdinandy P, Schluter KD, Schulz R (2017) Lack of contribution of p66shc and its mitochondrial translocation to ischemia–reperfusion injury and cardioprotection by ischemic preconditioning. Front Physiol 8:733. https://doi.org/10.3389/fphys.2017.00733

    Article  PubMed  PubMed Central  Google Scholar 

  13. Boengler K, Lochnit G, Schulz R (2018) Mitochondria “THE” target of myocardial conditioning. Am J Physiol Heart Circ Physiol 315:H1215–H1231. https://doi.org/10.1152/ajpheart.00124.2018

    Article  PubMed  Google Scholar 

  14. Bolli R, Jeroudi MO, Patel BS, DuBose CM, Lai EK, Roberts R, McCay PB (1989) Direct evidence that oxygen-derived free radicals contribute to postischemic myocardial dysfunction in the intact dog. Proc Natl Acad Sci USA 86:4695–4699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Botker HE, Hausenloy D, Andreadou I, Antonucci S, Boengler K, Davidson SM, Deshwal S, Devaux Y, Di Lisa F, Di Sante M, Efentakis P, Femmino S, Garcia-Dorado D, Giricz Z, Ibanez B, Iliodromitis E, Kaludercic N, Kleinbongard P, Neuhauser M, Ovize M, Pagliaro P, Rahbek-Schmidt M, Ruiz-Meana M, Schluter KD, Schulz R, Skyschally A, Wilder C, Yellon DM, Ferdinandy P, Heusch G (2018) Practical guidelines for rigor and reproducibility in preclinical and clinical studies on cardioprotection. Basic Res Cardiol 113:39. https://doi.org/10.1007/s00395-018-0696-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Brown JE, Zeiger SL, Hettinger JC, Brooks JD, Holt B, Morrow JD, Musiek ES, Milne G, McLaughlin B (2010) Essential role of the redox-sensitive kinase p66shc in determining energetic and oxidative status and cell fate in neuronal preconditioning. J Neurosci 30:5242–5252. https://doi.org/10.1523/jneurosci.6366-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cai X, Hu Y, Tang H, Hu H, Pang L, Xing J, Liu Z, Luo Y, Jiang B, Liu T, Gorospe M, Chen C, Wang W (2016) RNA methyltransferase NSUN2 promotes stress-induced HUVEC senescence. Oncotarget 7:19099–19110. https://doi.org/10.18632/oncotarget.8087

    Article  PubMed  PubMed Central  Google Scholar 

  18. Camici GG, Savarese G, Akhmedov A, Luscher TF (2015) Molecular mechanism of endothelial and vascular aging: implications for cardiovascular disease. Eur Heart J 36:3392–3403. https://doi.org/10.1093/eurheartj/ehv587

    Article  CAS  PubMed  Google Scholar 

  19. Camici GG, Schiavoni M, Francia P, Bachschmid M, Martin-Padura I, Hersberger M, Tanner FC, Pelicci P, Volpe M, Anversa P, Luscher TF, Cosentino F (2007) Genetic deletion of p66(Shc) adaptor protein prevents hyperglycemia-induced endothelial dysfunction and oxidative stress. Proc Natl Acad Sci USA 104:5217–5222. https://doi.org/10.1073/pnas.0609656104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Carlomosti F, D’Agostino M, Beji S, Torcinaro A, Rizzi R, Zaccagnini G, Maimone B, Di Stefano V, De Santa F, Cordisco S, Antonini A, Ciarapica R, Dellambra E, Martelli F, Avitabile D, Capogrossi MC, Magenta A (2017) Oxidative stress-induced miR-200c disrupts the regulatory loop among SIRT1, FOXO1, and eNOS. Antioxid Redox Signal 27:328–344. https://doi.org/10.1089/ars.2016.6643

    Article  CAS  PubMed  Google Scholar 

  21. Carpi A, Menabo R, Kaludercic N, Pelicci P, Di Lisa F, Giorgio M (2009) The cardioprotective effects elicited by p66(Shc) ablation demonstrate the crucial role of mitochondrial ROS formation in ischemia/reperfusion injury. Biochim Biophys Acta 1787:774–780. https://doi.org/10.1016/j.bbabio.2009.04.001

    Article  CAS  PubMed  Google Scholar 

  22. Ciciliot S, Albiero M, Campanaro S, Poncina N, Tedesco S, Scattolini V, Dalla Costa F, Cignarella A, Vettore M, Di Gangi IM, Bogialli S, Avogaro A, Fadini GP (2018) Interplay between gut microbiota and p66Shc affects obesity-associated insulin resistance. FASEB J 32:4004–4015. https://doi.org/10.1096/fj.201701409R

    Article  CAS  PubMed  Google Scholar 

  23. Ciciliot S, Albiero M, Menegazzo L, Poncina N, Scattolini V, Danesi A, Pagnin E, Marabita M, Blaauw B, Giorgio M, Trinei M, Foletto M, Prevedello L, Nitti D, Avogaro A, Fadini GP (2015) p66Shc deletion or deficiency protects from obesity but not metabolic dysfunction in mice and humans. Diabetologia 58:2352–2360. https://doi.org/10.1007/s00125-015-3667-8

    Article  CAS  PubMed  Google Scholar 

  24. Ciciliot S, Fadini GP (2019) Modulation of obesity and insulin resistance by the redox enzyme and adaptor protein p66(Shc). Int J Mol Sci 20:E985. https://doi.org/10.3390/ijms20040985

    Article  CAS  PubMed  Google Scholar 

  25. Costantino S, Paneni F, Mitchell K, Mohammed SA, Hussain S, Gkolfos C, Berrino L, Volpe M, Schwarzwald C, Luscher TF, Cosentino F (2018) Hyperglycaemia-induced epigenetic changes drive persistent cardiac dysfunction via the adaptor p66(Shc). Int J Cardiol 268:179–186. https://doi.org/10.1016/j.ijcard.2018.04.082

    Article  PubMed  Google Scholar 

  26. Costantino S, Paneni F, Virdis A, Hussain S, Mohammed SA, Capretti G, Akhmedov A, Dalgaard K, Chiandotto S, Pospisilik JA, Jenuwein T, Giorgio M, Volpe M, Taddei S, Luscher TF, Cosentino F (2019) Interplay among H3K9-editing enzymes SUV39H1, JMJD2C and SRC-1 drives p66Shc transcription and vascular oxidative stress in obesity. Eur Heart J 40:383–391. https://doi.org/10.1093/eurheartj/ehx615

    Article  PubMed  Google Scholar 

  27. Davidson SM, Ferdinandy P, Andreadou I, Botker HE, Heusch G, Ibanez B, Ovize M, Schulz R, Yellon DM, Hausenloy DJ, Garcia-Dorado D (2019) Multitarget strategies to reduce myocardial ischemia/reperfusion injury: JACC review topic of the week. J Am Coll Cardiol 73:89–99. https://doi.org/10.1016/j.jacc.2018.09.086

    Article  PubMed  Google Scholar 

  28. Derungs R, Camici GG, Spescha RD, Welt T, Tackenberg C, Spani C, Wirth F, Grimm A, Eckert A, Nitsch RM, Kulic L (2017) Genetic ablation of the p66(Shc) adaptor protein reverses cognitive deficits and improves mitochondrial function in an APP transgenic mouse model of Alzheimer’s disease. Mol Psychiatry 22:605–614. https://doi.org/10.1038/mp.2016.112

    Article  CAS  PubMed  Google Scholar 

  29. Di Lisa F, Giorgio M, Ferdinandy P, Schulz R (2017) New aspects of p66Shc in ischaemia reperfusion injury and other cardiovascular diseases. Br J Pharmacol 174:1690–1703. https://doi.org/10.1111/bph.13478

    Article  CAS  PubMed  Google Scholar 

  30. Egea J, Fabregat I, Frapart YM, Ghezzi P, Gorlach A, Kietzmann T, Kubaichuk K, Knaus UG, Lopez MG, Olaso-Gonzalez G, Petry A, Schulz R, Vina J, Winyard P, Abbas K, Ademowo OS, Afonso CB, Andreadou I, Antelmann H, Antunes F, Aslan M, Bachschmid MM, Barbosa RM, Belousov V, Berndt C, Bernlohr D, Bertran E, Bindoli A, Bottari SP, Brito PM, Carrara G, Casas AI, Chatzi A, Chondrogianni N, Conrad M, Cooke MS, Costa JG, Cuadrado A, My-Chan Dang P, De Smet B, Debelec-Butuner B, Dias IHK, Dunn JD, Edson AJ, El Assar M, El-Benna J, Ferdinandy P, Fernandes AS, Fladmark KE, Forstermann U, Giniatullin R, Giricz Z, Gorbe A, Griffiths H, Hampl V, Hanf A, Herget J, Hernansanz-Agustin P, Hillion M, Huang J, Ilikay S, Jansen-Durr P, Jaquet V, Joles JA, Kalyanaraman B, Kaminskyy D, Karbaschi M, Kleanthous M, Klotz LO, Korac B, Korkmaz KS, Koziel R, Kracun D, Krause KH, Kren V, Krieg T, Laranjinha J, Lazou A, Li H, Martinez-Ruiz A, Matsui R, McBean GJ, Meredith SP, Messens J, Miguel V, Mikhed Y, Milisav I, Milkovic L, Miranda-Vizuete A, Mojovic M, Monsalve M, Mouthuy PA, Mulvey J, Munzel T, Muzykantov V, Nguyen ITN, Oelze M, Oliveira NG, Palmeira CM, Papaevgeniou N et al (2017) European contribution to the study of ROS: a summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS). Redox Biol 13:94–162. https://doi.org/10.1016/j.redox.2017.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fadini GP, Albiero M, Menegazzo L, Boscaro E, Pagnin E, Iori E, Cosma C, Lapolla A, Pengo V, Stendardo M, Agostini C, Pelicci PG, Giorgio M, Avogaro A (2010) The redox enzyme p66Shc contributes to diabetes and ischemia-induced delay in cutaneous wound healing. Diabetes 59:2306–2314. https://doi.org/10.2337/db09-1727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Feng D, Yao J, Wang G, Li Z, Zu G, Li Y, Luo F, Ning S, Qasim W, Chen Z, Tian X (2017) Inhibition of p66Shc-mediated mitochondrial apoptosis via targeting prolyl-isomerase Pin1 attenuates intestinal ischemia/reperfusion injury in rats. Clin Sci (Lond) 131:759–773. https://doi.org/10.1042/cs20160799

    Article  CAS  Google Scholar 

  33. Ferdinandy P, Baczko I, Bencsik P, Giricz Z, Gorbe A, Pacher P, Varga ZV, Varro A, Schulz R (2018) Definition of hidden drug cardiotoxicity: paradigm change in cardiac safety testing and its clinical implications. Eur Heart J. https://doi.org/10.1093/eurheartj/ehy365

    Article  PubMed Central  Google Scholar 

  34. Franzeck FC, Hof D, Spescha RD, Hasun M, Akhmedov A, Steffel J, Shi Y, Cosentino F, Tanner FC, von Eckardstein A, Maier W, Luscher TF, Wyss CA, Camici GG (2012) Expression of the aging gene p66Shc is increased in peripheral blood monocytes of patients with acute coronary syndrome but not with stable coronary artery disease. Atherosclerosis 220:282–286. https://doi.org/10.1016/j.atherosclerosis.2011.10.035

    Article  CAS  PubMed  Google Scholar 

  35. Frijhoff J, Dagnell M, Augsten M, Beltrami E, Giorgio M, Ostman A (2014) The mitochondrial reactive oxygen species regulator p66Shc controls PDGF-induced signaling and migration through protein tyrosine phosphatase oxidation. Free Radic Biol Med 68:268–277. https://doi.org/10.1016/j.freeradbiomed.2013.12.022

    Article  CAS  PubMed  Google Scholar 

  36. Garlick PB, Davies MJ, Hearse DJ, Slater TF (1987) Direct detection of free radicals in the reperfused rat heart using electron spin resonance spectroscopy. Circ Res 61:757–760

    Article  CAS  PubMed  Google Scholar 

  37. Gerber PA, Rutter GA (2017) The role of oxidative stress and hypoxia in pancreatic beta-cell dysfunction in diabetes mellitus. Antioxid Redox Signal 26:501–518. https://doi.org/10.1089/ars.2016.6755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gertz M, Fischer F, Wolters D, Steegborn C (2008) Activation of the lifespan regulator p66Shc through reversible disulfide bond formation. Proc Natl Acad Sci USA 105:5705–5709. https://doi.org/10.1073/pnas.0800691105

    Article  PubMed  PubMed Central  Google Scholar 

  39. Giorgio M, Berry A, Berniakovich I, Poletaeva I, Trinei M, Stendardo M, Hagopian K, Ramsey JJ, Cortopassi G, Migliaccio E, Notzli S, Amrein I, Lipp HP, Cirulli F, Pelicci PG (2012) The p66Shc knocked out mice are short lived under natural condition. Aging Cell 11:162–168. https://doi.org/10.1111/j.1474-9726.2011.00770.x

    Article  CAS  PubMed  Google Scholar 

  40. Giorgio M, Migliaccio E, Orsini F, Paolucci D, Moroni M, Contursi C, Pelliccia G, Luzi L, Minucci S, Marcaccio M, Pinton P, Rizzuto R, Bernardi P, Paolucci F, Pelicci PG (2005) Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell 122:221–233. https://doi.org/10.1016/j.cell.2005.05.011

    Article  CAS  PubMed  Google Scholar 

  41. Giorgio V, von Stockum S, Antoniel M, Fabbro A, Fogolari F, Forte M, Glick GD, Petronilli V, Zoratti M, Szabo I, Lippe G, Bernardi P (2013) Dimers of mitochondrial ATP synthase form the permeability transition pore. Proc Natl Acad Sci USA 110:5887–5892. https://doi.org/10.1073/pnas.1217823110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Graiani G, Lagrasta C, Migliaccio E, Spillmann F, Meloni M, Madeddu P, Quaini F, Padura IM, Lanfrancone L, Pelicci P, Emanueli C (2005) Genetic deletion of the p66Shc adaptor protein protects from angiotensin II-induced myocardial damage. Hypertension 46:433–440. https://doi.org/10.1161/01.HYP.0000174986.73346.ba

    Article  CAS  PubMed  Google Scholar 

  43. Grimaldi V, Vietri MT, Schiano C, Picascia A, De Pascale MR, Fiorito C, Casamassimi A, Napoli C (2015) Epigenetic reprogramming in atherosclerosis. Curr Atheroscler Rep 17:476. https://doi.org/10.1007/s11883-014-0476-3

    Article  CAS  PubMed  Google Scholar 

  44. Haller M, Khalid S, Kremser L, Fresser F, Furlan T, Hermann M, Guenther J, Drasche A, Leitges M, Giorgio M, Baier G, Lindner H, Troppmair J (2016) Novel Insights into the PKCbeta-dependent regulation of the oxidoreductase p66Shc. J Biol Chem 291:23557–23568. https://doi.org/10.1074/jbc.M116.752766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hausenloy DJ, Garcia-Dorado D, Botker HE, Davidson SM, Downey J, Engel FB, Jennings R, Lecour S, Leor J, Madonna R, Ovize M, Perrino C, Prunier F, Schulz R, Sluijter JPG, Van Laake LW, Vinten-Johansen J, Yellon DM, Ytrehus K, Heusch G, Ferdinandy P (2017) Novel targets and future strategies for acute cardioprotection: position paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart. Cardiovasc Res 113:564–585. https://doi.org/10.1093/cvr/cvx049

    Article  CAS  PubMed  Google Scholar 

  46. Hausenloy DJ, Yellon DM (2006) Survival kinases in ischemic preconditioning and postconditioning. Cardiovasc Res 70:240–253. https://doi.org/10.1016/j.cardiores.2006.01.017

    Article  CAS  PubMed  Google Scholar 

  47. Heusch G (2015) Mitochondria at the heart of cardiovascular protection: p66shc-friend or foe? Eur Heart J 36:469–471. https://doi.org/10.1093/eurheartj/ehu409

    Article  PubMed  Google Scholar 

  48. Karunakaran U, Elumalai S, Moon JS, Won KC (2019) CD36 dependent redoxosomes promotes ceramide-mediated pancreatic beta-cell failure via p66Shc activation. Free Radic Biol Med 134:505–515. https://doi.org/10.1016/j.freeradbiomed.2019.02.004

    Article  CAS  PubMed  Google Scholar 

  49. Khalid S, Drasche A, Thurner M, Hermann M, Ashraf MI, Fresser F, Baier G, Kremser L, Lindner H, Troppmair J (2016) cJun N-terminal kinase (JNK) phosphorylation of serine 36 is critical for p66Shc activation. Sci Rep 6:20930. https://doi.org/10.1038/srep20930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Khanday FA, Yamamori T, Mattagajasingh I, Zhang Z, Bugayenko A, Naqvi A, Santhanam L, Nabi N, Kasuno K, Day BW, Irani K (2006) Rac1 leads to phosphorylation-dependent increase in stability of the p66shc adaptor protein: role in Rac1-induced oxidative stress. Mol Biol Cell 17:122–129. https://doi.org/10.1091/mbc.e05-06-0570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kim CS, Kim YR, Naqvi A, Kumar S, Hoffman TA, Jung SB, Kumar A, Jeon BH, McNamara DM, Irani K (2011) Homocysteine promotes human endothelial cell dysfunction via site-specific epigenetic regulation of p66shc. Cardiovasc Res 92:466–475. https://doi.org/10.1093/cvr/cvr250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kim YM, Kim SJ, Tatsunami R, Yamamura H, Fukai T, Ushio-Fukai M (2017) ROS-induced ROS release orchestrated by Nox4, Nox2, and mitochondria in VEGF signaling and angiogenesis. Am J Physiol Cell Physiol 312:C749–C764. https://doi.org/10.1152/ajpcell.00346.2016

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kim YR, Kim CS, Naqvi A, Kumar A, Kumar S, Hoffman TA, Irani K (2012) Epigenetic upregulation of p66shc mediates low-density lipoprotein cholesterol-induced endothelial cell dysfunction. Am J Physiol Heart Circ Physiol 303:H189–H196. https://doi.org/10.1152/ajpheart.01218.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Koncsos G, Varga ZV, Baranyai T, Boengler K, Rohrbach S, Li L, Schluter KD, Schreckenberg R, Radovits T, Olah A, Matyas C, Lux A, Al-Khrasani M, Komlodi T, Bukosza N, Mathe D, Deres L, Bartekova M, Rajtik T, Adameova A, Szigeti K, Hamar P, Helyes Z, Tretter L, Pacher P, Merkely B, Giricz Z, Schulz R, Ferdinandy P (2016) Diastolic dysfunction in prediabetic male rats: role of mitochondrial oxidative stress. Am J Physiol Heart Circ Physiol 311:H927–H943. https://doi.org/10.1152/ajpheart.00049.2016

    Article  PubMed  PubMed Central  Google Scholar 

  55. Koncsos G, Varga ZV, Baranyai T, Ferdinandy P, Schulz R, Giricz Z, Boengler K (2018) Nagarse treatment of cardiac subsarcolemmal and interfibrillar mitochondria leads to artefacts in mitochondrial protein quantification. J Pharmacol Toxicol Methods 91:50–58. https://doi.org/10.1016/j.vascn.2018.01.004

    Article  CAS  PubMed  Google Scholar 

  56. Kong X, Guan J, Li J, Wei J, Wang R (2017) P66(Shc)-SIRT1 regulation of oxidative stress protects against cardio-cerebral vascular disease. Mol Neurobiol 54:5277–5285. https://doi.org/10.1007/s12035-016-0073-2

    Article  CAS  PubMed  Google Scholar 

  57. Kumar S (2019) P66Shc and vascular endothelial function. Biosci Rep. https://doi.org/10.1042/bsr20182134

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kumar S, Kim YR, Vikram A, Naqvi A, Li Q, Kassan M, Kumar V, Bachschmid MM, Jacobs JS, Kumar A, Irani K (2017) Sirtuin1-regulated lysine acetylation of p66Shc governs diabetes-induced vascular oxidative stress and endothelial dysfunction. Proc Natl Acad Sci USA 114:1714–1719. https://doi.org/10.1073/pnas.1614112114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lee SK, Chung JI, Park MS, Joo HK, Lee EJ, Cho EJ, Park JB, Ryoo S, Irani K, Jeon BH (2011) Apurinic/apyrimidinic endonuclease 1 inhibits protein kinase C-mediated p66shc phosphorylation and vasoconstriction. Cardiovasc Res 91:502–509. https://doi.org/10.1093/cvr/cvr095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Li M, Sala V, De Santis MC, Cimino J, Cappello P, Pianca N, Di Bona A, Margaria JP, Martini M, Lazzarini E, Pirozzi F, Rossi L, Franco I, Bornbaum J, Heger J, Rohrbach S, Perino A, Tocchetti CG, Lima BHF, Teixeira MM, Porporato PE, Schulz R, Angelini A, Sandri M, Ameri P, Sciarretta S, Lima-Junior RCP, Mongillo M, Zaglia T, Morello F, Novelli F, Hirsch E, Ghigo A (2018) Phosphoinositide 3-kinase gamma inhibition protects from anthracycline cardiotoxicity and reduces tumor growth. Circulation 138:696–711. https://doi.org/10.1161/circulationaha.117.030352

    Article  CAS  PubMed  Google Scholar 

  61. Li Q, Kim YR, Vikram A, Kumar S, Kassan M, Gabani M, Lee SK, Jacobs JS, Irani K (2016) P66Shc-induced microRNA-34a causes diabetic endothelial dysfunction by downregulating sirtuin1. Arterioscler Thromb Vasc Biol 36:2394–2403. https://doi.org/10.1161/atvbaha.116.308321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lin KM, Lin B, Lian IY, Mestril R, Scheffler IE, Dillmann WH (2001) Combined and individual mitochondrial HSP60 and HSP10 expression in cardiac myocytes protects mitochondrial function and prevents apoptotic cell deaths induced by simulated ischemia-reoxygenation. Circulation 103:1787–1792

    Article  CAS  PubMed  Google Scholar 

  63. Malhotra A, Vashistha H, Yadav VS, Dube MG, Kalra SP, Abdellatif M, Meggs LG (2009) Inhibition of p66ShcA redox activity in cardiac muscle cells attenuates hyperglycemia-induced oxidative stress and apoptosis. Am J Physiol Heart Circ Physiol 296:H380–H388. https://doi.org/10.1152/ajpheart.00225.2008

    Article  CAS  PubMed  Google Scholar 

  64. Marques-Aleixo I, Santos-Alves E, Mariani D, Rizo-Roca D, Padrao AI, Rocha-Rodrigues S, Viscor G, Torrella JR, Ferreira R, Oliveira PJ, Magalhaes J, Ascensao A (2015) Physical exercise prior and during treatment reduces sub-chronic doxorubicin-induced mitochondrial toxicity and oxidative stress. Mitochondrion 20:22–33. https://doi.org/10.1016/j.mito.2014.10.008

    Article  CAS  PubMed  Google Scholar 

  65. Martin-Padura I, de Nigris F, Migliaccio E, Mansueto G, Minardi S, Rienzo M, Lerman LO, Stendardo M, Giorgio M, De Rosa G, Pelicci PG, Napoli C (2008) p66Shc deletion confers vascular protection in advanced atherosclerosis in hypercholesterolemic apolipoprotein E knockout mice. Endothelium 15:276–287. https://doi.org/10.1080/10623320802487791

    Article  CAS  PubMed  Google Scholar 

  66. Meng G, Zhao S, Xie L, Han Y, Ji Y (2018) Protein S-sulfhydration by hydrogen sulfide in cardiovascular system. Br J Pharmacol 175:1146–1156. https://doi.org/10.1111/bph.13825

    Article  CAS  PubMed  Google Scholar 

  67. Miao Q, Wang Q, Dong L, Wang Y, Tan Y, Zhang X (2015) The expression of p66shc in peripheral blood monocytes is increased in patients with coronary heart disease and correlated with endothelium-dependent vasodilatation. Heart Vessels 30:451–457. https://doi.org/10.1007/s00380-014-0497-4

    Article  PubMed  Google Scholar 

  68. Migliaccio E, Giorgio M, Mele S, Pelicci G, Reboldi P, Pandolfi PP, Lanfrancone L, Pelicci PG (1999) The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 402:309–313. https://doi.org/10.1038/46311

    Article  CAS  PubMed  Google Scholar 

  69. Migliaccio E, Mele S, Salcini AE, Pelicci G, Lai KM, Superti-Furga G, Pawson T, Di Fiore PP, Lanfrancone L, Pelicci PG (1997) Opposite effects of the p52shc/p46shc and p66shc splicing isoforms on the EGF receptor-MAP kinase-fos signalling pathway. EMBO J 16:706–716. https://doi.org/10.1093/emboj/16.4.706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mishra M, Duraisamy AJ, Bhattacharjee S, Kowluru RA (2018) Adaptor protein p66Shc: a link between cytosolic and mitochondrial dysfunction in the development of diabetic retinopathy. Antioxid Redox Signal. https://doi.org/10.1089/ars.2018.7542

    Article  PubMed  Google Scholar 

  71. Miyazawa M, Tsuji Y (2014) Evidence for a novel antioxidant function and isoform-specific regulation of the human p66Shc gene. Mol Biol Cell 25:2116–2127. https://doi.org/10.1091/mbc.E13-11-0666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Morciano G, Bonora M, Campo G, Aquila G, Rizzo P, Giorgi C, Wieckowski MR, Pinton P (2017) Mechanistic role of mPTP in ischemia–reperfusion injury. Adv Exp Med Biol 982:169–189. https://doi.org/10.1007/978-3-319-55330-6_9

    Article  CAS  PubMed  Google Scholar 

  73. Mukhuty A, Fouzder C, Mukherjee S, Malick C, Mukhopadhyay S, Bhattacharya S, Kundu R (2017) Palmitate induced Fetuin-A secretion from pancreatic beta-cells adversely affects its function and elicits inflammation. Biochem Biophys Res Commun 491:1118–1124. https://doi.org/10.1016/j.bbrc.2017.08.022

    Article  CAS  PubMed  Google Scholar 

  74. Murphy E, Steenbergen C (2008) Mechanisms underlying acute protection from cardiac ischemia–reperfusion injury. Physiol Rev 88:581–609. https://doi.org/10.1152/physrev.00024.2007

    Article  CAS  PubMed  Google Scholar 

  75. Napoli C, Martin-Padura I, de Nigris F, Giorgio M, Mansueto G, Somma P, Condorelli M, Sica G, De Rosa G, Pelicci P (2003) Deletion of the p66Shc longevity gene reduces systemic and tissue oxidative stress, vascular cell apoptosis, and early atherogenesis in mice fed a high-fat diet. Proc Natl Acad Sci USA 100:2112–2116. https://doi.org/10.1073/pnas.0336359100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Natalicchio A, Tortosa F, Labarbuta R, Biondi G, Marrano N, Carchia E, Leonardini A, Cignarelli A, Bugliani M, Marchetti P, Fadini GP, Giorgio M, Avogaro A, Perrini S, Laviola L, Giorgino F (2015) The p66(Shc) redox adaptor protein is induced by saturated fatty acids and mediates lipotoxicity-induced apoptosis in pancreatic beta cells. Diabetologia 58:1260–1271. https://doi.org/10.1007/s00125-015-3563-2

    Article  CAS  PubMed  Google Scholar 

  77. Nemoto S, Combs CA, French S, Ahn BH, Fergusson MM, Balaban RS, Finkel T (2006) The mammalian longevity-associated gene product p66shc regulates mitochondrial metabolism. J Biol Chem 281:10555–10560. https://doi.org/10.1074/jbc.M511626200

    Article  CAS  PubMed  Google Scholar 

  78. Newsholme P, Cruzat VF, Keane KN, Carlessi R, de Bittencourt PI Jr. (2016) Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochem J 473:4527–4550. https://doi.org/10.1042/bcj20160503c

    Article  CAS  PubMed  Google Scholar 

  79. Onnis A, Cianfanelli V, Cassioli C, Samardzic D, Pelicci PG, Cecconi F, Baldari CT (2018) The pro-oxidant adaptor p66SHC promotes B cell mitophagy by disrupting mitochondrial integrity and recruiting LC3-II. Autophagy 14:2117–2138. https://doi.org/10.1080/15548627.2018.1505153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Orsini F, Migliaccio E, Moroni M, Contursi C, Raker VA, Piccini D, Martin-Padura I, Pelliccia G, Trinei M, Bono M, Puri C, Tacchetti C, Ferrini M, Mannucci R, Nicoletti I, Lanfrancone L, Giorgio M, Pelicci PG (2004) The life span determinant p66Shc localizes to mitochondria where it associates with mitochondrial heat shock protein 70 and regulates trans-membrane potential. J Biol Chem 279:25689–25695. https://doi.org/10.1074/jbc.M401844200

    Article  CAS  PubMed  Google Scholar 

  81. Oshikawa J, Kim SJ, Furuta E, Caliceti C, Chen GF, McKinney RD, Kuhr F, Levitan I, Fukai T, Ushio-Fukai M (2012) Novel role of p66Shc in ROS-dependent VEGF signaling and angiogenesis in endothelial cells. Am J Physiol Heart Circ Physiol 302:H724–H732. https://doi.org/10.1152/ajpheart.00739.2011

    Article  CAS  PubMed  Google Scholar 

  82. Pagnin E, Fadini G, de Toni R, Tiengo A, Calo L, Avogaro A (2005) Diabetes induces p66shc gene expression in human peripheral blood mononuclear cells: relationship to oxidative stress. J Clin Endocrinol Metab 90:1130–1136. https://doi.org/10.1210/jc.2004-1283

    Article  CAS  PubMed  Google Scholar 

  83. Palmer JW, Tandler B, Hoppel CL (1977) Biochemical properties of subsarcolemmal and interfibrillar mitochondria isolated from rat cardiac muscle. J Biol Chem 252:8731–8739

    CAS  PubMed  Google Scholar 

  84. Palmer JW, Tandler B, Hoppel CL (1986) Heterogeneous response of subsarcolemmal heart mitochondria to calcium. Am J Physiol 250:H741–H748

    CAS  PubMed  Google Scholar 

  85. Paneni F, Mocharla P, Akhmedov A, Costantino S, Osto E, Volpe M, Luscher TF, Cosentino F (2012) Gene silencing of the mitochondrial adaptor p66(Shc) suppresses vascular hyperglycemic memory in diabetes. Circ Res 111:278–289. https://doi.org/10.1161/circresaha.112.266593

    Article  CAS  PubMed  Google Scholar 

  86. Perez H, Finocchietto PV, Alippe Y, Rebagliati I, Elguero ME, Villalba N, Poderoso JJ, Carreras MC (2018) p66(Shc) inactivation modifies RNS production, regulates Sirt3 activity, and improves mitochondrial homeostasis, delaying the aging process in mouse brain. Oxid Med Cell Longev 2018:8561892. https://doi.org/10.1155/2018/8561892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pinton P, Rimessi A, Marchi S, Orsini F, Migliaccio E, Giorgio M, Contursi C, Minucci S, Mantovani F, Wieckowski MR, Del Sal G, Pelicci PG, Rizzuto R (2007) Protein kinase C beta and prolyl isomerase 1 regulate mitochondrial effects of the life-span determinant p66Shc. Science 315:659–663. https://doi.org/10.1126/science.1135380

    Article  CAS  PubMed  Google Scholar 

  88. Plecita-Hlavata L, Jezek P (2016) Integration of superoxide formation and cristae morphology for mitochondrial redox signaling. Int J Biochem Cell Biol 80:31–50. https://doi.org/10.1016/j.biocel.2016.09.010

    Article  CAS  PubMed  Google Scholar 

  89. Qi D, Young LH (2015) AMPK: energy sensor and survival mechanism in the ischemic heart. Trends Endocrinol Metab 26:422–429. https://doi.org/10.1016/j.tem.2015.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Qu B, Gong K, Yang H, Li Y, Jiang T, Zeng Z, Cao Z, Pan X (2018) SIRT1 suppresses high glucose and palmitate-induced osteoclast differentiation via deacetylating p66Shc. Mol Cell Endocrinol 474:97–104. https://doi.org/10.1016/j.mce.2018.02.015

    Article  CAS  PubMed  Google Scholar 

  91. Ramsey JJ, Tran D, Giorgio M, Griffey SM, Koehne A, Laing ST, Taylor SL, Kim K, Cortopassi GA, Lloyd KC, Hagopian K, Tomilov AA, Migliaccio E, Pelicci PG, McDonald RB (2014) The influence of Shc proteins on life span in mice. J Gerontol A Biol Sci Med Sci 69:1177–1185. https://doi.org/10.1093/gerona/glt198

    Article  CAS  PubMed  Google Scholar 

  92. Sampaio SF, Branco AF, Wojtala A, Vega-Naredo I, Wieckowski MR, Oliveira PJ (2016) p66Shc signaling is involved in stress responses elicited by anthracycline treatment of rat cardiomyoblasts. Arch Toxicol 90:1669–1684. https://doi.org/10.1007/s00204-015-1583-9

    Article  CAS  PubMed  Google Scholar 

  93. Savino C, Pelicci P, Giorgio M (2013) The P66Shc/mitochondrial permeability transition pore pathway determines neurodegeneration. Oxid Med Cell Longev 2013:719407. https://doi.org/10.1155/2013/719407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sentinelli F, Romeo S, Barbetti F, Berni A, Filippi E, Fanelli M, Fallarino M, Baroni MG (2006) Search for genetic variants in the p66Shc longevity gene by PCR-single strand conformational polymorphism in patients with early-onset cardiovascular disease. BMC Genet 7:14. https://doi.org/10.1186/1471-2156-7-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Shahzad K, Gadi I, Nazir S, Al-Dabet MM, Kohli S, Bock F, Breitenstein L, Ranjan S, Fuchs T, Halloul Z, Nawroth PP, Pelicci PG, Braun-Dullaeus RC, Camerer E, Esmon CT, Isermann B (2018) Activated protein C reverses epigenetically sustained p66(Shc) expression in plaque-associated macrophages in diabetes. Commun Biol 1:104. https://doi.org/10.1038/s42003-018-0108-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Shi Y, Cosentino F, Camici GG, Akhmedov A, Vanhoutte PM, Tanner FC, Luscher TF (2011) Oxidized low-density lipoprotein activates p66Shc via lectin-like oxidized low-density lipoprotein receptor-1, protein kinase C-beta, and c-Jun N-terminal kinase kinase in human endothelial cells. Arterioscler Thromb Vasc Biol 31:2090–2097. https://doi.org/10.1161/atvbaha.111.229260

    Article  CAS  PubMed  Google Scholar 

  97. Shi Y, Luscher TF, Camici GG (2014) Dual role of endothelial nitric oxide synthase in oxidized LDL-induced, p66Shc-mediated oxidative stress in cultured human endothelial cells. PLoS One 9:e107787. https://doi.org/10.1371/journal.pone.0107787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Skyschally A, Schulz R, Gres P, Korth HG, Heusch G (2003) Attenuation of ischemic preconditioning in pigs by scavenging of free oxyradicals with ascorbic acid. Am J Physiol Heart Circ Physiol 284:H698–H703. https://doi.org/10.1152/ajpheart.00693.2002

    Article  CAS  PubMed  Google Scholar 

  99. Spescha RD, Klohs J, Semerano A, Giacalone G, Derungs RS, Reiner MF, Rodriguez Gutierrez D, Mendez-Carmona N, Glanzmann M, Savarese G, Krankel N, Akhmedov A, Keller S, Mocharla P, Kaufmann MR, Wenger RH, Vogel J, Kulic L, Nitsch RM, Beer JH, Peruzzotti-Jametti L, Sessa M, Luscher TF, Camici GG (2015) Post-ischaemic silencing of p66Shc reduces ischaemia/reperfusion brain injury and its expression correlates to clinical outcome in stroke. Eur Heart J 36:1590–1600. https://doi.org/10.1093/eurheartj/ehv140

    Article  CAS  PubMed  Google Scholar 

  100. Tomilov AA, Bicocca V, Schoenfeld RA, Giorgio M, Migliaccio E, Ramsey JJ, Hagopian K, Pelicci PG, Cortopassi GA (2010) Decreased superoxide production in macrophages of long-lived p66Shc knock-out mice. J Biol Chem 285:1153–1165. https://doi.org/10.1074/jbc.M109.017491

    Article  CAS  PubMed  Google Scholar 

  101. Tomilov AA, Ramsey JJ, Hagopian K, Giorgio M, Kim KM, Lam A, Migliaccio E, Lloyd KC, Berniakovich I, Prolla TA, Pelicci P, Cortopassi GA (2011) The Shc locus regulates insulin signaling and adiposity in mammals. Aging Cell 10:55–65. https://doi.org/10.1111/j.1474-9726.2010.00641.x

    Article  CAS  PubMed  Google Scholar 

  102. Trinei M, Giorgio M, Cicalese A, Barozzi S, Ventura A, Migliaccio E, Milia E, Padura IM, Raker VA, Maccarana M, Petronilli V, Minucci S, Bernardi P, Lanfrancone L, Pelicci PG (2002) A p53-p66Shc signalling pathway controls intracellular redox status, levels of oxidation-damaged DNA and oxidative stress-induced apoptosis. Oncogene 21:3872–3878. https://doi.org/10.1038/sj.onc.1205513

    Article  CAS  PubMed  Google Scholar 

  103. Vikram A, Kim YR, Kumar S, Naqvi A, Hoffman TA, Kumar A, Miller FJ Jr, Kim CS, Irani K (2014) Canonical Wnt signaling induces vascular endothelial dysfunction via p66Shc-regulated reactive oxygen species. Arterioscler Thromb Vasc Biol 34:2301–2309. https://doi.org/10.1161/atvbaha.114.304338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wang J, Qi J, Wu Q, Jiang H, Yin Y, Huan Y, Zhao Y, Zhu M (2019) Propofol attenuates high glucose-induced P66shc expression in human umbilical vein endothelial cells through Sirt1. Acta Biochim Biophys Sin (Shanghai) 51:197–203. https://doi.org/10.1093/abbs/gmy167

    Article  Google Scholar 

  105. Wary KK, Mainiero F, Isakoff SJ, Marcantonio EE, Giancotti FG (1996) The adaptor protein Shc couples a class of integrins to the control of cell cycle progression. Cell 87:733–743

    Article  CAS  PubMed  Google Scholar 

  106. Wils J, Favre J, Bellien J (2017) Modulating putative endothelial progenitor cells for the treatment of endothelial dysfunction and cardiovascular complications in diabetes. Pharmacol Ther 170:98–115. https://doi.org/10.1016/j.pharmthera.2016.10.014

    Article  CAS  PubMed  Google Scholar 

  107. Xiao Y, Xia J, Cheng J, Huang H, Zhou Y, Yang X, Su X, Ke Y, Ling W (2019) Inhibition of S-adenosylhomocysteine hydrolase induces endothelial dysfunction via epigenetic regulation of p66shc-mediated oxidative stress pathway. Circulation. https://doi.org/10.1161/circulationaha.118.036336

    Article  PubMed  PubMed Central  Google Scholar 

  108. Xie ZZ, Liu Y, Bian JS (2016) Hydrogen sulfide and cellular redox homeostasis. Oxid Med Cell Longev 2016:6043038. https://doi.org/10.1155/2016/6043038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Xie ZZ, Shi MM, Xie L, Wu ZY, Li G, Hua F, Bian JS (2014) Sulfhydration of p66Shc at cysteine59 mediates the antioxidant effect of hydrogen sulfide. Antioxid Redox Signal 21:2531–2542. https://doi.org/10.1089/ars.2013.5604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Xiong Y, Yepuri G, Montani JP, Ming XF, Yang Z (2017) Arginase-II deficiency extends lifespan in mice. Front Physiol 8:682. https://doi.org/10.3389/fphys.2017.00682

    Article  PubMed  PubMed Central  Google Scholar 

  111. Yang M, Stowe DF, Udoh KB, Heisner JS, Camara AK (2014) Reversible blockade of complex I or inhibition of PKCbeta reduces activation and mitochondria translocation of p66Shc to preserve cardiac function after ischemia. PLoS One 9:e113534. https://doi.org/10.1371/journal.pone.0113534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zhang M, Lin L, Xu C, Chai D, Peng F, Lin J (2018) VDR agonist prevents diabetic endothelial dysfunction through inhibition of prolyl isomerase-1-mediated mitochondrial oxidative stress and inflammation. Oxid Med Cell Longev 2018:1714896. https://doi.org/10.1155/2018/1714896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhang M, Tang J, Shan H, Zhang Q, Yang X, Zhang J, Li Y (2018) p66Shc mediates mitochondrial dysfunction dependent on PKC activation in airway epithelial cells induced by cigarette smoke. Oxid Med Cell Longev 2018:5837123. https://doi.org/10.1155/2018/5837123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zhao MH, Hu J, Li S, Wu Q, Lu P (2018) P66Shc expression in diabetic rat retina. BMC Ophthalmol 18:58. https://doi.org/10.1186/s12886-018-0724-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zheng W, Li D, Gao X, Zhang W, Robinson BO (2019) Carvedilol alleviates diabetic cardiomyopathy in diabetic rats. Exp Ther Med 17:479–487. https://doi.org/10.3892/etm.2018.6954

    Article  CAS  PubMed  Google Scholar 

  116. Zhu JN, Fu YH, Hu ZQ, Li WY, Tang CM, Fei HW, Yang H, Lin QX, Gou DM, Wu SL, Shan ZX (2017) Activation of miR-34a-5p/Sirt1/p66shc pathway contributes to doxorubicin-induced cardiotoxicity. Sci Rep 7:11879. https://doi.org/10.1038/s41598-017-12192-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zhu M, Chen J, Wen M, Sun Z, Sun X, Wang J, Miao C (2014) Propofol protects against angiotensin II-induced mouse hippocampal HT22 cells apoptosis via inhibition of p66Shc mitochondrial translocation. Neuromolecular Med 16:772–781. https://doi.org/10.1007/s12017-014-8326-6

    Article  CAS  PubMed  Google Scholar 

  118. Zweier JL, Flaherty JT, Weisfeldt ML (1987) Direct measurement of free radical generation following reperfusion of ischemic myocardium. Proc Natl Acad Sci USA 84:1404–1407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

RS was funded by the German Research Foundation: Project number 268555672-SFB-B05 and the Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Schulz.

Ethics declarations

Conflict of interest

Rainer Schulz received honoraries for lectures provided to AstraZeneca, Recordati and Sanofi.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. The study was approved by local authorities (“Regierungspräsidium Giessen” (G91-2017) and the animal welfare office of the Justus-Liebig-University Giessen). This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boengler, K., Bornbaum, J., Schlüter, KD. et al. P66shc and its role in ischemic cardiovascular diseases. Basic Res Cardiol 114, 29 (2019). https://doi.org/10.1007/s00395-019-0738-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-019-0738-x

Keywords

Navigation