[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

On the dust load and rainfall relationship in South Asia: an analysis from CMIP5

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This study is aimed at examining the consistency of the relationship between load of dust and rainfall simulated by different climate models and its implication for the Indian summer monsoon system. Monthly mean outputs of 12 climate models, obtained from the archive of the Coupled Model Intercomparison Project phase 5 (CMIP5) for the period 1951–2004, are analyzed to investigate the relationship between dust and rainfall. Comparative analysis of the model simulated precipitation with the India Meteorological Department (IMD) gridded rainfall, CRU TS3.21 and GPCP version 2.2 data sets show significant differences between the spatial patterns of JJAS rainfall as well as annual cycle of rainfall simulated by various models and observations. Similarly, significant inter-model differences are also noted in the simulation of load of dust, nevertheless it is further noted that most of the CMIP5 models are able to capture the major dust sources across the study region. Although the scatter plot analysis and the lead–lag pattern correlation between the dust load and the rainfall show strong relationship between the dust load over distant sources and the rainfall in the South Asian region in individual models, the temporal scale of this association indicates large differences amongst the models. Our results caution that it would be pre-mature to draw any robust conclusions on the time scale of the relationship between dust and the rainfall in the South Asian region based on either CMIP5 results or limited number of previous studies. Hence, we would like to emphasize upon the fact that any conclusions drawn on the relationship between the dust load and the South Asian rainfall using model simulation is highly dependent on the degree of complexity incorporated in those models such as the representation of aerosol life cycle, their interaction with clouds, precipitation and other components of the climate system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Adler RF et al (2003) The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–Present). J Hydrometeorol 4:1147–1167

    Article  Google Scholar 

  • Albrecht BA (1989) “Aerosols, cloud microphysics, and fractional cloudiness”. Science 245(4923):1227–1230

    Article  Google Scholar 

  • Bollasina M, Nigam S (2009) Absorbing aerosols and pre-summer monsoon hydroclimate variability over the Indian subcontinent: the challenge in investigating links. Atmos Res 94(2):338–344

    Article  Google Scholar 

  • Bollasina MA, Ming Y, Ramaswamy V (2011) Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science 14:502–505

    Article  Google Scholar 

  • Chin M et al (2002) Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and Sun photometer measurements. J Atmos Sci 59:461–483

    Article  Google Scholar 

  • Dash SK, Jenamani RK, Kalsi SR, Panda SK (2007) Some evidence of climate change in twentieth-century India. Clim Change 85:299–321

    Article  Google Scholar 

  • Dey S, Tripathi SN, Singh RP, Holben BN (2004) Influence of dust storms on the aerosol optical properties over the Indo-Gangetic basin. J Geophys Res 109:D20211. doi:10.1029/2004JD004924

    Article  Google Scholar 

  • Donner LJ et al (2011) The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J Clim 24:3484–3519

    Article  Google Scholar 

  • Dufresne J-L et al (2013) Climate change projections using the IPSL-CM5 Earth system model: from CMIP3 to CMIP5. Clim Dyn 40:2123–2165

    Article  Google Scholar 

  • Evan AT, Flamant C, Fiedler S, Doherty O (2014) An analysis of aeolian dust in climate models. Geophys Res Lett 41:5996–6001. doi:10.1002/2014GL060545

    Article  Google Scholar 

  • Ganguly D, Jayaraman A, Gadhavi H (2005) In situ ship cruise measurements of mass concentration and size distribution of aerosols over Bay of Bengal and their radiative impacts. J Geophys Res 110:D06205. doi:10.1029/2004JD005325

    Article  Google Scholar 

  • Ganguly D, Rasch PJ, Wang H, Yoon J-H (2012a) Fast and slow responses of the South Asian monsoon system to anthropogenic aerosols. Geophys Res Lett 39:L18804. doi:10.1029/2012GL053043

    Article  Google Scholar 

  • Ganguly D, Rasch PJ, Wang H, Yoon J-H (2012b) Climate response of the South Asian monsoon system to anthropogenic aerosols. J Geophys Res 117:D13209. doi:10.1029/2012JD017508

    Article  Google Scholar 

  • Gautam R, Hsu NC, Lau KM, Kafatos M (2009) Aerosol and rainfall variability over the Indian monsoon region: distributions, trends and coupling. Ann Geophys 27:3691–3703

    Article  Google Scholar 

  • Gent PR et al (2011) The community climate system model version 4. J Clim 24:4973–4991

    Article  Google Scholar 

  • Ginoux P et al (2001) Sources and distributions of dust aerosols simulated with the GOCART model. J Geophys Res D 106(17):20255–20273

    Article  Google Scholar 

  • Ginoux P, Prospero JM, Gill TE, Hsu NC, Zhao M (2012) Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev Geophys 50:RG3005. doi:10.1029/2012RG000388

    Article  Google Scholar 

  • Goswami BN, Venugopal V, Sengupta D, Madhusoodanan MS, Xavier PK (2006) Increasing trend of extreme rain events over india in awarming environment. Science 314:1442–1445

    Article  Google Scholar 

  • Hansen J, Sato M, Ruedy R (1997) Radiative forcing and climate response. J Geophys Res 102(D6):6831–6864

    Article  Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (2001) Clim change 2001: the scientific basis. Cambridge University Press, Cambridge, p. 870

    Google Scholar 

  • Hurwitz MM, Calvo N, Garfinkel CI, Butler AH, Ineson S, Cagnazzo C, Manzini E, Peña-Ortiz C (2014) Extra-tropical atmospheric response to ENSO in the CMIP5 models. Clim Dyn 43(12):3367–3376. doi:10.1007/s00382-014-2110-z

    Article  Google Scholar 

  • Jin Q, Wei J, Yang Z-L(2014) Positive response of Indian summer rainfall to Middle East dust. Geophy Res Lett 41(11):4068–4074. doi:10.1002/2014GL059980

    Article  Google Scholar 

  • Jin Q, Wei J, Yang Z-L, Pu B, Huang J (2015) Consistent response of Indian summer monsoon to Middle East dust in observations and simulations. Atmos Chem Phys 15:9897–9915. doi:10.5194/acp-15-9897-2015

    Article  Google Scholar 

  • Jones CD et al (2011) The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci Model Dev 4:543–570. doi:10.5194/gmd-4-543-2011

    Article  Google Scholar 

  • Kapoor RK, Kanugai KK, Paul SK, Sharma SK (1978) Characteristic features of atmospheric aerosols over India and their role in warm rain process. Pure Appl Geophys 117:583–598

    Article  Google Scholar 

  • Kim D et al (2012) The tropical subseasonal variability simulated in the NASA GISS general circulation model. J Clim 25:4641–4659

    Article  Google Scholar 

  • Krishnamurthy V, Shukla J (2008) Seasonal persistence and propagation of intraseasonal patterns over the Indian summer monsoon region. Clim Dyn 30:353–369

    Article  Google Scholar 

  • Kuhlmann J, Quaas J (2010) How can aerosols affect the Asian summer monsoon? assessment during three consecutive pre-monsoon seasons from CALIPSO satellite data. Atmos Chem Phys 10(10):4673–4688. doi:10.5194/acp-10-4673-2010

    Article  Google Scholar 

  • Lau KM, Kim MK, Kim KM (2006) Asian summer monsoon anomalies induced by aerosol direct forcing: the role of the Tibetan Plateau. Clim Dynam 26(7–8):855–864. doi:10.1007/s00382-006-0114-z

    Article  Google Scholar 

  • Lau KM, Ramanathan V, Wu G-X, Li Z, Tsay SC, Hsu C, Sikka R, Holben B, Lu D, Tartari G, Chin M, Koudelova P, Chen H, Ma Y, Huang J, Taniguchi K, Zhang R (2008) The joint aerosol–monsoon experiment a new challenge for monsoon climate research. BAMS 89:369–383. doi:10.1175/bams-89-3-369

    Article  Google Scholar 

  • Lau KM, Kim K-M, Christina NH, Brent NH (2009) Possible influences of air pollution, dust- and sandstorms on the Indian monsoon. WMO Bulletin 58(1):2009

    Google Scholar 

  • Lee J-Y, Wang B (2012) Future change of global monsoon in the CMIP5. Clim Dyn 42(1–2):101–119. doi:10.1007/s00382-012-1564-0

    Google Scholar 

  • Manoj MG, Devara PCS, Safai PD, Goswami BN (2011) Absorbing aerosols facilitate transition of Indian monsoon breaks to active spells. Clim Dyn 37:2181–2198. doi:10.1007/s00382-010-0971-3

    Article  Google Scholar 

  • Menon A, Levermann A, Schewe J, Lehmann J, Frieler K (2013) Consistent increase in Indian monsoon rainfall and its variability across CMIP-5 models. Earth Syst Dynam 4:287–300

    Article  Google Scholar 

  • Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712. doi:10.1002/Joc.1181

    Article  Google Scholar 

  • Niyogi D, Chang H, Chen F, Gu L, Kumar A, Menon S, Pielke RA (2007) Potential impacts of aerosol–land–atmosphere interactions on the Indian monsoonal rainfall characteristics. Nat Hazards 42:345–359. doi:10.1007/s11069-006-9085-y

    Article  Google Scholar 

  • Pathirana A, Herath S, Yamada T, Swain D (2007) Impacts of absorbing aerosols on South Asian rainfall a modeling study. Clim Change 85:103–118. doi:10.1007/s10584-006-9184-5

    Article  Google Scholar 

  • Rajeevan M, Bhate J, Kale JD, Lal B (2006) High resolution daily gridded rainfall data for the indian region: analysis of break and active monsoon spells. Curr Sci 91:296–306

    Google Scholar 

  • Ramanathan V et al (2005) Atmospheric brown clouds: impacts on South Asian climate and hydrological cycle. Proc Natl Acad Sci USA 102(15):5326–5333. doi:10.1073/pnas.0500656102

    Article  Google Scholar 

  • Ross SM (2004) Introduction to probability and statistics for engineers and scientists. 3rd edn, Elsevier, Amsterdam

    Google Scholar 

  • Sabeerali CT, Ramu Dandi A, Dhakate A, Salunke K, Mahapatra S, Rao SA (2013) Simulation of boreal summer intraseasonal oscillations in the latest CMIP5 coupled GCMs. J Geophys Res Atmos 118:4401–4420. doi:10.1002/jgrd50403

    Article  Google Scholar 

  • Salzmann M, Weser H, Cherian R (2014) Robust response of Asian summer monsoon to anthropogenic aerosols in CMIP5 models. J Geophys Res Atmos 119:11321–11337. doi:10.1002/2014JD021783

    Article  Google Scholar 

  • Sanap SD, Ayantika DC, Pandithurai G, Niranjan K (2014) Assessment of the aerosol distribution over Indian subcontinent in CMIP5 models. Atmos Environ 87:123–137

    Article  Google Scholar 

  • Sanap SD, Pandithurai G, Manoj MG (2015) On the response of Indian summer monsoon to aerosol forcing in CMIP5 model simulations. Clim Dyn 45(9–10):2949–2961. doi:10.1007/s00382-015-2516-2

    Article  Google Scholar 

  • Sengupta A, Rajeevan M (2013) Uncertainty quantification and reliability analysis of CMIP5 projections for the Indian summer monsoon. Curr Sci 105(12):1692

    Google Scholar 

  • Sillmann J, Kharin VV, Zhang X, Zwiers FW, Bronaugh D (2013a) Climate extremes indices in the CMIP5 multimodel ensemble: part 1. Model evaluation in the present climate. J Geophys Res Atmos 118:1716–1733. doi:10.1002/jgrd.50203

    Article  Google Scholar 

  • Sillmann J, Kharin VV, Zwiers FW, Zhang X, Bronaugh D (2013b) Climate extremes indices in the CMIP5 multimodel ensemble: part 2. Future climate projections. J Geophys Res Atmos 118:2473–2493. doi:10.1002/jgrd

    Article  Google Scholar 

  • Singh C (2013a) Characteristics of monsoon breaks and intraseasonal oscillations over central India during the last half century. Atmos Res. doi: 10.1016/j.atmosres.2013.03.003

    Google Scholar 

  • Singh C (2013b) Changing pattern of the Indian summer monsoon rainfall: an objective analysis. Clim Dyn 128:120–128. doi:10.1007/s00382-013-1710-3

    Google Scholar 

  • Sokolik I, Toon O (1996) Direct radiative forcing by anthropogenic airborne mineral aerosols. Nature 381:681–683

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2009) A summary of the CMIP5 experiment design. PCDMI Rep, pp. 33 (Available online at http://cmip-pcmdi.llnl.gov/cmip5/docs/Taylor_CMIP5_design.pdf.)

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. BAMS. doi:10.1175/BAMS-D-11-00094.1

    Google Scholar 

  • Tegen I, Lacis A, Fung I (1996) The influence of climate forcing of mineral aerosols from disturbed soils. Nature 380:419–422

    Article  Google Scholar 

  • Twomey S (1977) The influence of pollution on the shortwave Albedo of clouds. J Atmos Sci 34:1149–1154

    Article  Google Scholar 

  • Vinoj V et al (2014) Short-term modulation of Indian summer monsoon rainfall by West Asian dust. Nat Geosci 7:308–313. doi:10.1038/ngeo2107

    Article  Google Scholar 

  • Wang C (2007) Impact of direct radiative forcing of black carbon aerosols on tropical convective precipitation. Geophys Res Lett 34:L05709. doi:10.1029/2006GL028416

    Google Scholar 

  • Watanabe M et al (2010) Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity. J Clim 23:6312–6335

    Article  Google Scholar 

Download references

Acknowledgements

First author is thankful to Head MASD, Group Director ER&SSG and Director IIRS for providing the support to carry out the present research. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups for producing and making available their model output (listed in Table 1). We also acknowledged Giovanni TRMM Online Visualization and Analysis System (TOVAS) for making available the monthly global precipitation GPCP version 2.2 data set for the research purpose. We thank IMD for preparing the quality controlled daily rainfall data set and making it available for research purpose. The CRU TS3.21 data set has been procured from http://badc.nerc.ac.uk. TOMS aerosol index and GOCART dust optical depth have been obtained from http://disc.sci.gsfc.nasa.gov/data-hldings/PIP/aerosol_index.html and http://acd-ext.gsfc.nasa.gov/People/Chin/gocartinfo.html respectively. We thank editor and anonymous reviewers for the comments on an earlier version of this manuscript which have helped us to bring out the manuscript in the present form.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charu Singh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2213 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, C., Ganguly, D. & Dash, S.K. On the dust load and rainfall relationship in South Asia: an analysis from CMIP5. Clim Dyn 50, 403–422 (2018). https://doi.org/10.1007/s00382-017-3617-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-017-3617-x

Keywords

Navigation