[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

New Families of n-Clusters Verifying the Erdős–Faber–Lovász Conjecture

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

Erdős, Faber and Lovász conjectured in 1972 that the vertices of a linear hypergraph with n edges, each of size n, can be strongly colored with n colors. It was shown by Romero and Sánchez-Arroyo that an equivalent conjecture is obtained when linear hypergraphs are replaced by n-clusters. In this paper we describe new families of EFL-compliant n-clusters; that is, those for which the conjecture holds. Moreover, we describe ways to extend some n-clusters to larger ones preserving EFL-compliance. Also, our approach allowed us to provide a new upper bound for the chromatic number of n-clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Batten, L., Beutelspacher, A.: The theory of finite linear spaces. Combinatorics of points and lines. Cambridge University Press, Cambridge (1993)

    Book  MATH  Google Scholar 

  2. Berge, C., Hilton, A.J.W.: On two conjectures about edge-colouring hypergraphs. Congr. Numerantium 70, 99–104 (1990)

    MathSciNet  MATH  Google Scholar 

  3. Behzad, M., Chartrand, G., Cooper Jr., J.K.: The colour numbers of complete graphs. J. Lond. Math. Soc. 42, 226–228 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  4. Betten, A., Betten, D.: Linear spaces with at most 12 points. J. Comb. Des. 7, 118–145 (1999)

    MathSciNet  MATH  Google Scholar 

  5. Chang, W.I., Lawler, E.L.: Edge coloring of hypergraphs and a conjecture of Erdős, Faber, and Lovász. Combinatorica 8(3), 293–295 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Erdős, P.: Problems and results in graph theory and combinatorial analysis. In: Nash-Williams, S. (ed.) Proceedings of the 5th British Combinatorial Conference, Aberdeen, 1975, Congress Numerantum, vol. 15, pp. 169–192 (1976)

  7. Faber, V.: The Erdős-Faber-Lovász conjecture—the uniform regular case. J. Comb. 1(2), 113–120 (2010)

    MathSciNet  MATH  Google Scholar 

  8. Jackson, B., Sethuraman, G., Whitehead, C.: A note on the Erdős-Faber-Lovász conjecture. Discrete Math. 307(7–8), 911–915 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kahn, J.: Coloring nearly-disjoint hypergraphs with \(n+o(n)\) colors. J. Comb. Theory Ser. A 59, 31–39 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Libois, P.: Géométrie de la relativité restreinte. Bull. Soc. Math. Belg. XIV, 381–388 (1962, in French)

  11. Mitchem, J., Schmidt, R.L.: On the Erdős-Faber-Lovász conjecture. Ars Comb. 97, 497–505 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Paul, V., Germina, K.A.: On edge coloring of hypergraphs and Erdős-Faber-Lovász conjecture. Discrete Math. Algorithms Appl. 04, 1250003 [5 pages] (2012)

  13. Romero, D., Alonso-Pecina, F.: The Erdős-Faber-Lovász conjecture is true for \(n\le 12\). Discrete Math. Algorithms Appl. 06, 1450039 [5 pages] (2014)

  14. Romero, D., Sánchez-Arroyo, A.: Adding evidence to the Erdős-Faber-Lovász conjecture. Ars Comb. 85, 71–84 (2007)

    MATH  Google Scholar 

  15. Romero, D., Sánchez-Arroyo, A.: Advances on the Erdős-Faber-Lovász conjecture. In: Grimmet, G., McDiarmid, C. (eds.) Combinatorics, Complexity and Chance: A Tribute to Dominic Welsh, pp. 285–298. Oxford University Press, Oxford (2007)

  16. Sánchez-Arroyo, A.: The Erdős-Faber-Lovász conjecture for dense hypergraphs. Discrete Math. 308, 991–992 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Vázquez, A.: Dos temas en sistemas lineales: la conjetura de Erdős-Faber-Lovász y transversales. Ph.D. Thesis, Instituto de Matemáticas, Universidad Nacional Autónoma de México (2014, In Spanish)

  18. Vázquez-Avila, A., Araujo-Pardo, G.: A note on Erdős-Faber-Lovász Conjecture and edge coloring of complete graphs. arXiv:1605.03374v1 (2016, In press)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Romero.

Additional information

On sabbatical leave at: Instituto Tecnológico de Monterrey, Nuevo León, Mexico.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calvillo, G., Romero, D. New Families of n-Clusters Verifying the Erdős–Faber–Lovász Conjecture. Graphs and Combinatorics 32, 2241–2252 (2016). https://doi.org/10.1007/s00373-016-1733-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-016-1733-8

Keywords

Mathematics Subject Classification

Navigation