[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Vertex Coloring of Graphs by Total 2-Weightings

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

An assignment of weights to the edges and the vertices of a graph is a vertex-coloring total weighting if adjacent vertices have different total weight sums. Of interest in this paper are vertex-coloring total weightings with weight set of cardinality two, a problem motivated by the conjecture that every graph has such a weighting using the weights 1 and 2. Here we prove the existence of such weightings for certain families of graphs using any two different real weights. A related problem where all vertices have unique weight sums is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Addario-Berry, L., Dalal, K., McDiarmid, C., Reed, B., Thomason, A.: Vertex-colouring edge-weightings. Combinatorica 27(1), 1–12 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bac̆a, M., Jendrol, S., Miller, M., Ryan, : On irregular total labelings. J. Discret. Math. 307, 1378–1388 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chartrand, G., Jacobson, M.S., Lehel, J., Oellermann, O.R., Ruiz, S., Saba, F.: Irregular networks. Congr. Numer. 64, 187–192 (1988)

    MathSciNet  MATH  Google Scholar 

  4. Hulgan, J.: Concise proofs for adjacent vertex-distinguishing total colorings. Discret. Math. 309(8), 2548–2550 (2009). doi:10.1016/j.disc.2008.06.002. http://www.sciencedirect.com/science/article/pii/S0012365X08003865

  5. Kalkowski, M.: A note on the 1,2-conjecture. Submitted

  6. Kalkowski, M., Karoński, M., Pfender, F.: Vertex-coloring edge-weightings: Towards the 1-2-3-conjecture. Journal of Combinatorial Theory, Series B 100(3), 347–349 (2010). doi:10.1016/j.jctb.2009.06.002. http://www.sciencedirect.com/science/article/pii/S0095895609000586

  7. Karoński, M., Łuczak, T., Thomason, A.: Edge weights and vertex colours. J. Comb. Theory Series B 91, 151–157 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Przybyło, J., Woźniak, M.: On a 1, 2 conjecture. Discret. Math. Theor. Comp. Sci. 12(1), 101–108 (2010)

    MATH  Google Scholar 

  9. Wang, H.: On the adjacent vertex-distinguishing total chromatic numbers of the graphs with \(\varDelta (G) = 3\). J. Comb. Optim. 14, 87–109 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhang, Z., Chen, X., Li, J., Yao, B., Lu, X., Wang, J.: On adjacent-vertex-distinguishing total coloring of graphs. Sci. China Series A Math. 48, 289–299 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Hulgan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hulgan, J., Lehel, J., Ozeki, K. et al. Vertex Coloring of Graphs by Total 2-Weightings. Graphs and Combinatorics 32, 2461–2471 (2016). https://doi.org/10.1007/s00373-016-1712-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-016-1712-0

Keywords

Navigation