[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Constructing Half-Arc-Transitive Graphs of Valency Four with Prescribed Vertex Stabilizers

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

In this paper we give a strategy for constructing half-arc-transitive graphs of valency four with prescribed vertex stabilizers. This strategy is applied to answer a 2001 outstanding question of Roman Nedela and Dragan Marušič.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al-Bar, J.A., Al-Kenani, A.N., Muthana, N.M., Praeger, C.E., Spiga, P.: Finite edge-transitive graphs of valency four: a global approach. Electron. J. Comb. (to appear)

  2. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24, 235–265 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Conder, M., Marušič, D.: A tetravalent half-arc-transitive graph with non-abelian vertex stabilizer. J. Comb. Theory Ser. B 88, 67–76 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Conder, M., Potočnik, P., Šparl, P.: Some recent discoveries about half-arc-transitive graphs. Ars Math. Contemp. 8, 149–162 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Gardiner, A.: Arc-transitivity in graphs. Q. J. Math. Oxford Ser. (2) 24, 399–407 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  6. Glauberman, G.: Normalizers of \(p\)-subgroups in finite groups. Pac. J. Math. 29, 137–144 (1969)

    Article  MathSciNet  Google Scholar 

  7. Guralnick, R.: Subgroups of prime power index in a simple group. J. Algebra 81, 304–311 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kleidman, P., Liebeck, M.: The subgroup structure of the finite classical groups. In: London Mathematical Society Lecture Notes Series, vol. 129. Cambridge University Press, Cambridge (1990)

  9. Marušič, D., Nedela, R.: On the point stabilizers of transitive permutation groups with non-self-paired suborbits of length 2. J. Group Theory 4, 19–43 (2001)

    MathSciNet  MATH  Google Scholar 

  10. Marušič, D.: Quartic half-arc-transitive graphs with large vertex stabilizers. Discrete Math. 299, 180–193 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Potočnik, P., Verret, G.: On the vertex-stabiliser in arc-transitive digraphs. J. Comb. Theory Ser. B 100, 497–509 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Potočnik, P., Spiga, P., Verret, G.: A census of 4-valent half-arc-transitive graphs and arc-transitive digraphs of valence two. Ars Math.Contemp. 8, 133–148 (2015)

    MathSciNet  MATH  Google Scholar 

  13. Potočnik, P., Spiga, P., Verret, G.: Bounding the order of the vertex-stabiliser in 3-valent vertex-transitive and 4-valent arc-transitive graphs. J. Comb. Theory Ser. B. 111, 148–180 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Potočnik, P., Požar, R.: Smallest tetravalent half-arc-transitive graphs with the vertex-stabilizer isomorphic to the dihedral group of order 8. arXiv:1412.0453 [math.CO]

  15. Spiga, P., Verret, G.: On the order of vertex-stabilisers in vertex-transitive graphs with local group \(C_p\times C_p\) or \(C_p \text{ wr } C_2\). J. Algebra 448, 174–209 (2016)

  16. Spiga, P.: Two local conditions on the vertex stabiliser of arc-transitive graphs and their effect on the Sylow subgroups. J. Group Theory 15, 23–35 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Spiga, P.: An application of the local \(C(G,T)\) theorem to a conjecture of Weiss. Bull. Lond. Math. Soc. doi:10.1112/blms/bdv071

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Spiga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spiga, P. Constructing Half-Arc-Transitive Graphs of Valency Four with Prescribed Vertex Stabilizers. Graphs and Combinatorics 32, 2135–2144 (2016). https://doi.org/10.1007/s00373-016-1678-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-016-1678-y

Keywords

Mathematics Subject Classification

Navigation