[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

The Rainbow Connection Number of the Power Graph of a Finite Group

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

This paper studies the rainbow connection number of the power graph \(\Gamma _G\) of a finite group G. We determine the rainbow connection number of \(\Gamma _G\) if G has maximal involutions or is nilpotent, and show that the rainbow connection number of \(\Gamma _G\) is at most three if G has no maximal involutions. The rainbow connection numbers of power graphs of some nonnilpotent groups are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abawajy, J., Kelarev, A., Chowdhury, M.: Power graphs: a survey. Electron. J. Graph Theory Appl. 1, 125–147 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cameron, P.J.: The power graph of a finite group, II. J. Group Theory 13, 779–783 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cameron, P.J., Ghosh, S.: The power graph of a finite group. Discrete Math. 311, 1220–1222 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Carpentier, R.P., Liu, H., Silva, M., Sousa, T.: Rainbow connection for some families of hypergraphs. Discrete Math. 327, 40–50 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chakraborty, S., Fischer, E., Matsliah, A., Yuster, R.: Hardness and algorithms for rainbow connection. J. Comb. Optim. 21, 330–347 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chakrabarty, I., Ghosh, S., Sen, M.K.: Undirected power graphs of semigroups. Semigroup Forum 78, 410–426 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chartrand, G., Johns, G.L., McKeon, K.A., Zhang, P.: Rainbow connection in graphs. Math. Bohem. 133, 85–98 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Dorbec, P., Schiermeyer, I., Sidorowicz, E., Sopena, Éric: Rainbow connection in oriented graphs. Discrete Appl. Math. 179, 69–78 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Estetikasari, D., Sy, S.: On the rainbow connection for some corona graphs. Appl. Math. Sci. (Ruse) 7, 4975–4980 (2013)

    MathSciNet  Google Scholar 

  10. Feng, M., Ma, X., Wang, K.: The structure and metric dimension of the power graph of a finite group. Eur. J. Comb. 43, 82–97 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Feng, M., Ma, X., Wang, K.: The full automorphism group of the power (di)graph of a finite group. Eur. J. Comb. 52, 197–206 (2016)

  12. Frieze, A., Tsourakakis, C.E.: Rainbow connection of sparse random graphs. Electron. J. Comb. 19, Paper 5 (2012)

  13. Frobenius, G.: Verallgemeinerung des Sylow’schen Satzes. Berliner Sitzungsber, Berlin (1895)

  14. Gologranc, T., Gas̆per, M., Peterin, I.: Rainbow connection and graph products. Graphs Comb. 30, 591–607 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gorenstein, D.: Finite Groups. Chelsea Publishing Co., New York (1980)

    MATH  Google Scholar 

  16. Kelarev, A.V., Quinn, S.J.: A combinatorial property and power graphs of groups. Contrib. Gen. Algebra 12, 229–235 (2000)

    MathSciNet  MATH  Google Scholar 

  17. Kelarev, A.V., Quinn, S.J.: Directed graph and combinatorial properties of semigroups. J. Algebra 251, 16–26 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kelarev, A.V., Quinn, S.J.: A combinatorial property and power graphs of semigroups. Comment. Math. Uni. Carolinae 45, 1–7 (2004)

    MathSciNet  MATH  Google Scholar 

  19. Kelarev, A.V., Quinn, S.J., Smolikova, R.: Power graphs and semigroups of matrices. Bull. Aust. Math. Soc. 63, 341–344 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Le, V.B., Tuza, Z.: Finding optimal rainbow connection is hard. Rostock Inst. für Informatik. Preprint (2009)

  21. Li, H., Li, X., Liu, S.: The (strong) rainbow connection numbers of Cayley graphs on Abelian groups. Comput. Math. Appl. 62, 4082–4088 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, X., Liu, M., Schiermeyer, I.: Rainbow connection number of dense graphs. Discuss. Math. Graph Theory 33, 603–611 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, X., Shi, Y., Sun, Y.: Rainbow connections of graphs: a survey. Graphs Comb. 29, 1–38 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, X., Sun, Y.: Upper bounds for the rainbow connection numbers of line graphs. Graphs Comb. 28, 251–263 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ma, X., Feng, M.: On the chromatic number of the power graph of a finite group. Indag. Math. (NS) 26, 626–633 (2015)

  26. Pólya, G., Szegö, G.: Problems and theorems in analysis II: theory of functions, zeros, polynomials, determinants, number theory, geometry. Springer, Berlin (1976)

Download references

Acknowledgments

The authors are grateful to the referees for many useful suggestions and comments. This research is supported by National Natural Science Foundation of China (11271047, 11371204) and the Fundamental Research Funds for the Central University of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuanlong Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Feng, M. & Wang, K. The Rainbow Connection Number of the Power Graph of a Finite Group. Graphs and Combinatorics 32, 1495–1504 (2016). https://doi.org/10.1007/s00373-015-1665-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-015-1665-8

Keywords

Mathematics Subject Classification

Navigation