Abstract
This paper studies the rainbow connection number of the power graph \(\Gamma _G\) of a finite group G. We determine the rainbow connection number of \(\Gamma _G\) if G has maximal involutions or is nilpotent, and show that the rainbow connection number of \(\Gamma _G\) is at most three if G has no maximal involutions. The rainbow connection numbers of power graphs of some nonnilpotent groups are also given.
Similar content being viewed by others
References
Abawajy, J., Kelarev, A., Chowdhury, M.: Power graphs: a survey. Electron. J. Graph Theory Appl. 1, 125–147 (2013)
Cameron, P.J.: The power graph of a finite group, II. J. Group Theory 13, 779–783 (2010)
Cameron, P.J., Ghosh, S.: The power graph of a finite group. Discrete Math. 311, 1220–1222 (2011)
Carpentier, R.P., Liu, H., Silva, M., Sousa, T.: Rainbow connection for some families of hypergraphs. Discrete Math. 327, 40–50 (2014)
Chakraborty, S., Fischer, E., Matsliah, A., Yuster, R.: Hardness and algorithms for rainbow connection. J. Comb. Optim. 21, 330–347 (2011)
Chakrabarty, I., Ghosh, S., Sen, M.K.: Undirected power graphs of semigroups. Semigroup Forum 78, 410–426 (2009)
Chartrand, G., Johns, G.L., McKeon, K.A., Zhang, P.: Rainbow connection in graphs. Math. Bohem. 133, 85–98 (2008)
Dorbec, P., Schiermeyer, I., Sidorowicz, E., Sopena, Éric: Rainbow connection in oriented graphs. Discrete Appl. Math. 179, 69–78 (2014)
Estetikasari, D., Sy, S.: On the rainbow connection for some corona graphs. Appl. Math. Sci. (Ruse) 7, 4975–4980 (2013)
Feng, M., Ma, X., Wang, K.: The structure and metric dimension of the power graph of a finite group. Eur. J. Comb. 43, 82–97 (2015)
Feng, M., Ma, X., Wang, K.: The full automorphism group of the power (di)graph of a finite group. Eur. J. Comb. 52, 197–206 (2016)
Frieze, A., Tsourakakis, C.E.: Rainbow connection of sparse random graphs. Electron. J. Comb. 19, Paper 5 (2012)
Frobenius, G.: Verallgemeinerung des Sylow’schen Satzes. Berliner Sitzungsber, Berlin (1895)
Gologranc, T., Gas̆per, M., Peterin, I.: Rainbow connection and graph products. Graphs Comb. 30, 591–607 (2014)
Gorenstein, D.: Finite Groups. Chelsea Publishing Co., New York (1980)
Kelarev, A.V., Quinn, S.J.: A combinatorial property and power graphs of groups. Contrib. Gen. Algebra 12, 229–235 (2000)
Kelarev, A.V., Quinn, S.J.: Directed graph and combinatorial properties of semigroups. J. Algebra 251, 16–26 (2002)
Kelarev, A.V., Quinn, S.J.: A combinatorial property and power graphs of semigroups. Comment. Math. Uni. Carolinae 45, 1–7 (2004)
Kelarev, A.V., Quinn, S.J., Smolikova, R.: Power graphs and semigroups of matrices. Bull. Aust. Math. Soc. 63, 341–344 (2001)
Le, V.B., Tuza, Z.: Finding optimal rainbow connection is hard. Rostock Inst. für Informatik. Preprint (2009)
Li, H., Li, X., Liu, S.: The (strong) rainbow connection numbers of Cayley graphs on Abelian groups. Comput. Math. Appl. 62, 4082–4088 (2011)
Li, X., Liu, M., Schiermeyer, I.: Rainbow connection number of dense graphs. Discuss. Math. Graph Theory 33, 603–611 (2013)
Li, X., Shi, Y., Sun, Y.: Rainbow connections of graphs: a survey. Graphs Comb. 29, 1–38 (2013)
Li, X., Sun, Y.: Upper bounds for the rainbow connection numbers of line graphs. Graphs Comb. 28, 251–263 (2012)
Ma, X., Feng, M.: On the chromatic number of the power graph of a finite group. Indag. Math. (NS) 26, 626–633 (2015)
Pólya, G., Szegö, G.: Problems and theorems in analysis II: theory of functions, zeros, polynomials, determinants, number theory, geometry. Springer, Berlin (1976)
Acknowledgments
The authors are grateful to the referees for many useful suggestions and comments. This research is supported by National Natural Science Foundation of China (11271047, 11371204) and the Fundamental Research Funds for the Central University of China.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ma, X., Feng, M. & Wang, K. The Rainbow Connection Number of the Power Graph of a Finite Group. Graphs and Combinatorics 32, 1495–1504 (2016). https://doi.org/10.1007/s00373-015-1665-8
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00373-015-1665-8