[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

On the Maximum Weight of a Sparse Connected Graph of Given Order and Size

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

The weight of an edge of a graph is defined to be the sum of degrees of vertices incident to the edge. The weight of a graph G is the minimum of weights of edges of G. Jendrol’ and Schiermeyer (Combinatorica 21:351–359, 2001) determined the maximum weight of a graph having n vertices and m edges, thus solving a problem posed in 1990 by Erdős. The present paper is concerned with a modification of the mentioned problem, in which involved graphs are connected and of size \(m\le \left( {\begin{array}{c}n\\ 2\end{array}}\right) -\left( {\begin{array}{c}\lceil n/2\rceil \\ 2\end{array}}\right) \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borodin, O.V.: On the total coloring of planar graphs. J. Reine Angew. Math. 394, 180–185 (1989)

    MathSciNet  MATH  Google Scholar 

  2. Borowiecki, M., Broere, I., Frick, M., Mihók, P., Semanišin, G.: A survey of hereditary properties of graphs. Discuss. Math. Graph Theory 17, 5–50 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Fabrici, I., Madaras, T.: The structure of \(1\)-planar graphs. Discret. Math. 307, 854–865 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gajdoš, A., Horňák, M., Hudák, P., Madaras, T.: On the maximum weight of a planar graph of given order and size. Discret. Appl. Math. 177, 101–110 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Grünbaum, B.: New views on some old questions of combinatorial geometry. In: Colloquio Internazionale sulle Teorie Combinatorie, Tomo I, pp. 451–468, Accademia Nazionale dei Lincei, Rome (1976)

  6. Grünbaum, B., Shephard, G.C.: Analogues for tilings of Kotzig’s Theorem on minimal weights of edges. In: Rosa, A., Sabidussi, G., Turgeon, J. (eds.) Theory and Practice of Combinatorics, pp. 129–140. North-Holland, Amsterdam (1982)

    Google Scholar 

  7. Horňák, M., Jendrol’, S., Schiermeyer, I.: On maximum weight of a bipartite graph of given order and size. Discuss. Math. Graph Theory 33, 147–165 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Horňák, M., Jendrol’, S., Schiermeyer, I.: On the maximum weight of a dense connected graph of given order and size. Discrete Math. (2015). doi:10.1016/j.disc.2015.04.029

  9. Ivančo, J.: The weight of a graph. In: Nešetřil, J., Fiedler, M. (eds.) Fourth Czechoslovakian Symposium on Combinatorics, Graphs and Complexity, pp. 113–116. North-Holland, Amsterdam (1992)

    Chapter  Google Scholar 

  10. Ivančo, J., Jendrol’, S.: On extremal problems concerning weights of edges of graphs. In: Halász, G., Lovász, L., Miklós, D., Szőnyi, T. (eds.) Sets, Graphs and Numbers, pp. 399–410. North-Holland, Amsterdam (1992)

    Google Scholar 

  11. Jendrol’, S., Schiermeyer, I.: On a Max-Min problem concerning weights of edges. Combinatorica 21, 351–359 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jendrol’, S., Tuhársky, M.: A Kotzig type theorem for non-orientable surfaces. Math. Slovaca 56, 245–253 (2006)

    MathSciNet  MATH  Google Scholar 

  13. Kotzig, A.: Príspevok k teórii eulerovských polyédrov (Contribution to the theory of Eulerian polyhedra). Mat.-Fyz. Časopis. Slovensk. Akad. Vied 5, 111–113 (1955)

    Google Scholar 

  14. Petzold, M.: Maximale Kantengewichte zusammenhängender Graphen. PhD. Thesis, TU Bergaka-demie Freiberg (2012)

  15. Wernicke, P.: Über den kartographischen Vierfarbensatz. Math. Ann. 58, 413–426 (1904)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zaks, J.: Extending Kotzig’s theorem. Isr. J. Math. 45, 281–296 (1983)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This research was supported by the DAAD cooperation contract Freiberg-Košice. The work of the first two authors was supported by Science and Technology Assistance Agency under the contract No. APVV-0023-10 and by Grant VEGA 1/0652/12. The authors are indebted to an anonymous referee for his/her thorough reading of the manuscript and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirko Horňák.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horňák, M., Jendrol’, S. & Schiermeyer, I. On the Maximum Weight of a Sparse Connected Graph of Given Order and Size. Graphs and Combinatorics 32, 997–1012 (2016). https://doi.org/10.1007/s00373-015-1634-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-015-1634-2

Keywords

Navigation