Abstract
The weight of an edge of a graph is defined to be the sum of degrees of vertices incident to the edge. The weight of a graph G is the minimum of weights of edges of G. Jendrol’ and Schiermeyer (Combinatorica 21:351–359, 2001) determined the maximum weight of a graph having n vertices and m edges, thus solving a problem posed in 1990 by Erdős. The present paper is concerned with a modification of the mentioned problem, in which involved graphs are connected and of size \(m\le \left( {\begin{array}{c}n\\ 2\end{array}}\right) -\left( {\begin{array}{c}\lceil n/2\rceil \\ 2\end{array}}\right) \).
Similar content being viewed by others
References
Borodin, O.V.: On the total coloring of planar graphs. J. Reine Angew. Math. 394, 180–185 (1989)
Borowiecki, M., Broere, I., Frick, M., Mihók, P., Semanišin, G.: A survey of hereditary properties of graphs. Discuss. Math. Graph Theory 17, 5–50 (1997)
Fabrici, I., Madaras, T.: The structure of \(1\)-planar graphs. Discret. Math. 307, 854–865 (2007)
Gajdoš, A., Horňák, M., Hudák, P., Madaras, T.: On the maximum weight of a planar graph of given order and size. Discret. Appl. Math. 177, 101–110 (2014)
Grünbaum, B.: New views on some old questions of combinatorial geometry. In: Colloquio Internazionale sulle Teorie Combinatorie, Tomo I, pp. 451–468, Accademia Nazionale dei Lincei, Rome (1976)
Grünbaum, B., Shephard, G.C.: Analogues for tilings of Kotzig’s Theorem on minimal weights of edges. In: Rosa, A., Sabidussi, G., Turgeon, J. (eds.) Theory and Practice of Combinatorics, pp. 129–140. North-Holland, Amsterdam (1982)
Horňák, M., Jendrol’, S., Schiermeyer, I.: On maximum weight of a bipartite graph of given order and size. Discuss. Math. Graph Theory 33, 147–165 (2013)
Horňák, M., Jendrol’, S., Schiermeyer, I.: On the maximum weight of a dense connected graph of given order and size. Discrete Math. (2015). doi:10.1016/j.disc.2015.04.029
Ivančo, J.: The weight of a graph. In: Nešetřil, J., Fiedler, M. (eds.) Fourth Czechoslovakian Symposium on Combinatorics, Graphs and Complexity, pp. 113–116. North-Holland, Amsterdam (1992)
Ivančo, J., Jendrol’, S.: On extremal problems concerning weights of edges of graphs. In: Halász, G., Lovász, L., Miklós, D., Szőnyi, T. (eds.) Sets, Graphs and Numbers, pp. 399–410. North-Holland, Amsterdam (1992)
Jendrol’, S., Schiermeyer, I.: On a Max-Min problem concerning weights of edges. Combinatorica 21, 351–359 (2001)
Jendrol’, S., Tuhársky, M.: A Kotzig type theorem for non-orientable surfaces. Math. Slovaca 56, 245–253 (2006)
Kotzig, A.: Príspevok k teórii eulerovských polyédrov (Contribution to the theory of Eulerian polyhedra). Mat.-Fyz. Časopis. Slovensk. Akad. Vied 5, 111–113 (1955)
Petzold, M.: Maximale Kantengewichte zusammenhängender Graphen. PhD. Thesis, TU Bergaka-demie Freiberg (2012)
Wernicke, P.: Über den kartographischen Vierfarbensatz. Math. Ann. 58, 413–426 (1904)
Zaks, J.: Extending Kotzig’s theorem. Isr. J. Math. 45, 281–296 (1983)
Acknowledgments
This research was supported by the DAAD cooperation contract Freiberg-Košice. The work of the first two authors was supported by Science and Technology Assistance Agency under the contract No. APVV-0023-10 and by Grant VEGA 1/0652/12. The authors are indebted to an anonymous referee for his/her thorough reading of the manuscript and helpful comments.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Horňák, M., Jendrol’, S. & Schiermeyer, I. On the Maximum Weight of a Sparse Connected Graph of Given Order and Size. Graphs and Combinatorics 32, 997–1012 (2016). https://doi.org/10.1007/s00373-015-1634-2
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00373-015-1634-2