[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Multidecompositions of Several Graph Products

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

We find necessary and sufficient conditions for (C 4, E 2) multidecompositions of the cartesian product and tensor product of paths, cycles, and complete graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abueida A.: Multidesigns of the complete graph with a hole into the graph-pair of order 4. Bull. Inst. Combin. Appl. 53, 17–20 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Abueida A., Daven M.: Multidesigns for graphs-pairs on 4 and 5 vertices. Graphs Comb. 19(4), 433–447 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Abueida A., Daven M.: Multidecompositions of the complete graph. Ars Comb. 72, 17–22 (2004)

    MathSciNet  MATH  Google Scholar 

  4. Abueida A., Daven M., Roblee K.: Multidesigns of the λ-fold comlete graph for graph-pairs of order 4 and 5. Aust. J. Comb. 32, 125–136 (2005)

    MathSciNet  MATH  Google Scholar 

  5. Abueida A., O’Neil T.: Multidecomposition of λ K m into small cycles and claws. Bull. Inst. Comb. Appl. 49, 32–40 (2007)

    MathSciNet  MATH  Google Scholar 

  6. Abueida A., Clark S., Leach D.: Multidecomposition of the complete graph into graph pairs of order 4 with various leaves. Ars Comb. 93, 403–407 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Abueida A., Hampson C.: Multipacking and multicovering of K n F with graph-pairs of order 5 where F is a Hamilton Cycle or an (almost) 1-factor. Congr. Numerantium 183, 11–32 (2006)

    MathSciNet  MATH  Google Scholar 

  8. Abueida A., Daven M., Diestelkamp W., Edwards S., Parker D.: Multidesigns for graph-triples of order 6. Congr. Numerantium 183, 139–160 (2006)

    MathSciNet  MATH  Google Scholar 

  9. Bondy J.A., Murty U.S.R.: Graph Theory with Applications. North-Holland Publishing Company, New York (1979)

    Google Scholar 

  10. Bosak J.: Decompositions of Graphs. Kluwer Academic Publishers, Dordrecht (1990)

    MATH  Google Scholar 

  11. Hoffman D.G., Pike D.: 4-Cycle Decompoisiton of the Cartesian Prodent of Two Complete Graphs. J. Comb. Math. Comb. Comput. 28, 215–226 (1998)

    MathSciNet  MATH  Google Scholar 

  12. Karunambigai M.G., Muthusamy A.: Cycle factorization of tensor product of complete graphs. Bull. Inst. Combin. Appl. 52, 89–100 (2008)

    MathSciNet  MATH  Google Scholar 

  13. Lindner C.C., Rodger C.A.: Design Theory. CRC Press, Boca Raton (1997)

    MATH  Google Scholar 

  14. Ma J., Pu L., Shen H.: Cycle decompositions of K n, n -I. SIAM J. Discret. Math. 20(3), 603–609 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Manikandan R.S., Paulraja P.: C 5 -decompositions of the tensor product of complete graphs. Australas J. Comb. 37, 285–293 (2007)

    MathSciNet  MATH  Google Scholar 

  16. Manikandan R.S., Paulraja P.: C p -decompositions of some regular graphs. Discret. Math. 306(4), 429–451 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atif Abueida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abueida, A., Daven, M. Multidecompositions of Several Graph Products. Graphs and Combinatorics 29, 315–326 (2013). https://doi.org/10.1007/s00373-011-1127-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-011-1127-x

Keywords

Navigation