Abstract
A set S of vertices of a graph is a defensive k-alliance if every vertex \({v\in S}\) has at least k more neighbors in S than it has outside of S. Analogously, a set S is an offensive k-alliance if every vertex in the neighborhood of S has at least k more neighbors in S than it has outside of S. Also, a powerful k-alliance is a set S of vertices of the graph, which is both defensive k-alliance and offensive (k + 2)-alliance. A powerful k-alliance is called global if it is a dominating set. In this paper we show that for k ≥ 0, no graph is partitionable into global powerful k-alliances and, for k ≤ −1, we obtain upper bounds on the maximum number of sets belonging to a partition of a graph into global powerful k-alliances. In addition, we study the close relationships that exist between partitions of a Cartesian product graph, Γ1 × Γ2, into (global) powerful (k 1 + k 2)-alliances and partitions of Γ i into (global) powerful k i -alliances, \({i\in \{1,2\}}\).
Similar content being viewed by others
References
Bermudo S., Rodríguez-Velázquez J.A., Sigarreta J.M., Yero I.G.: On global offensive k-alliances in graphs. Appl. Math. Lett. 23, 1454–1458 (2010)
Brigham R.C., Dutton R., Haynes T.W., Hedetniemi S.T.: Powerful alliances in graphs. Discrete Math. 309(8), 2140–2147 (2009)
Brigham R.C., Dutton R., Hedetniemi S.: A sharp lower bound on the powerful alliance number of C m × C n . Congr. Numer. 167, 57–63 (2004)
Eroh, L., Gera, R.: Alliance partition number in graphs. Ars Combin. (2007, in press)
Eroh L., Gera R.: Global alliance partition in trees. J. Combin. Math. Combin. Comput. 66, 161–169 (2008)
Favaron O., Fricke G., Goddard W., Hedetniemi S., Hedetniemi S.T., Kristiansen P., Laskar R.C., Skaggs R.D.: Offensive alliances in graphs. Discuss. Math. Graph Theory 24(2), 263–275 (2004)
Fernau, H., Rodríguez-Velázquez, J.A., Sigarreta, J.M.: Global r-alliances and total domination. In: Cologne-Twente Workshop on Graphs and Combinatorial Optimization. Universitá degli Studi di Milano, Gargnano, Italy. Abstracts 98–101 (2008)
Fernau H., Rodríguez J.A., Sigarreta J.M.: Offensive k-alliances in graphs. Discrete Appl. Math. 157(1), 177–182 (2009)
Fricke G.H., Lawson L.M., Haynes T.W., Hedetniemi S.M., Hedetniemi S.T.: A note on defensive alliances in graphs. Bull. Inst. Combin. Appl. 38, 37–41 (2003)
Haynes T.W., Hedetniemi S.T., Henning M.A.: Global defensive alliances in graphs. Electron. J. Combin. 10, 139–146 (2003)
Haynes T.W., Lachniet J.A.: The alliance partition number of grid graphs. AKCE Int. J. Graphs Comb. 4(1), 51–59 (2007)
Kristiansen P., Hedetniemi S.M., Hedetniemi S.T.: Alliances in graphs. J. Combin. Math. Combin. Comput. 48, 157–177 (2004)
Rodríguez-Velázquez J.A., González-Yero I., Sigarreta J.M.: Defensive k-alliances in graphs. Appl. Math. Lett. 22, 96–100 (2009)
Rodríguez J.A., Sigarreta J.M.: Global alliances in planar graphs. AKCE Int. J. Graphs Comb. 4(1), 83–98 (2007)
Rodríguez J.A., Sigarreta J.M.: Global defensive k-alliances in graphs. Discrete Appl. Math. 157, 211–218 (2009)
Rodríguez J.A., Sigarreta J.M.: Offensive alliances in cubic graphs. Int. Math. Forum 1(36), 1773–1782 (2006)
Rodríguez J.A., Sigarreta J.M.: Spectral study of alliances in graphs. Discuss. Math. Graph Theory 27(1), 143–157 (2007)
Shafique K.H., Dutton R.D.: A tight bound on the cardinalities of maximum alliance-free and minimun alliance-cover sets. J. Combin. Math. Combin. Comput. 56, 139–145 (2006)
Shafique K.H., Dutton R.D.: Maximum alliance-free and minimum alliance-cover sets. Congr. Numer. 162, 139–146 (2003)
Shafique K.H., Dutton R.D.: On satisfactory partitioning of graphs. Congr. Numer. 154, 183–194 (2002)
Sigarreta J.M., Rodríguez J.A.: On the global offensive alliance number of a graph. Discrete Appl. Math. 157(2), 219–226 (2009)
Sigarreta J.M., Yero I.G., Bermudo S., Rodríguez-Velázquez J.A.: Partitioning a graph into offensive k-alliances. Discrete Appl. Math. 159, 224–231 (2011)
Yero I.G., Bermudo S., Rodríguez-Velázquez J.A., Sigarreta J.M.: Partitioning a graph into defensive k-alliances. Acta Math. Sin. (Engl. Ser.) 27(1), 73–82 (2011)
Yero, I.G., Rodríguez-Velázquez, J.A.: Boundary powerful k-alliances in graphs. Ars Combin. (2009, in press)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yero, I.G., Rodríguez-Velázquez, J.A. Partitioning a Graph into Global Powerful k-Alliances. Graphs and Combinatorics 28, 575–583 (2012). https://doi.org/10.1007/s00373-011-1065-7
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00373-011-1065-7