Abstract
For infinitely many natural numbers n, we construct 4-colorings of [n] = {1, 2, ..., n}, with equinumerous color classes, that contain no 4-term arithmetic progression whose elements are colored in distinct colors. This result solves an open problem of Jungić et al. (Comb Probab Comput 12:599–620, 2003) Axenovich and Fon-der-Flaass (Electron J Comb 11:R1, 2004).
Similar content being viewed by others
References
Axenovich, M., Fon-Der-Flaass, D.: On rainbow arithmetic progressions. Electron. J. Comb. 11, R1 (2004)
Landman, B., Robertson, A.: Ramsey theory on the integers. American Mathematical Society. Student Mathematical Library 24 (2003)
Conlon, D.: Rainbow solutions of linear equations over \({\mathbb{Z}}_{p}\) . Discrete Math. 306, 2056–2063 (2006)
Graham, R. L., Rothschild, B. L., Spencer, J. H.: Ramsey theory. Wiley, New York (1990)
Jungić, V., Licht (Fox), J., Mahdian, M., Nešetřil, J., Radoičić, R.: Rainbow arithmetic progressions and anti-Ramsey results. Comb. Probab. Comput. 12, 599–620 (2003)
Jungić, V., Radoičić, R.: Rainbow 3-term arithmetic progressions. Integers Electron. J. Combin. Number Theory 3, A18 (2003)
Szemerédi, E.: On sets of integers containing no k elements in arithmetic progression. Acta Arith. 27, 199–245 (1975)
van der Waerden, B. L.: Beweis einer Baudetschen Vermutung. Nieuw Archief voor Wis. 15, 212–216 (1927)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Conlon, D., Jungić, V. & Radoičić, R. On the Existence of Rainbow 4-Term Arithmetic Progressions. Graphs and Combinatorics 23, 249–254 (2007). https://doi.org/10.1007/s00373-007-0723-2
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/s00373-007-0723-2