[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Jin Akiyama: A Friend and His Mathematics

  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Jin’s story from three perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akiyama, J.: Factorization and linear arboricity of graphs, Doctor of Science Thesis. Tokyo University of Science (1982)

  • Akiyama, J.: S-wellposedness of partial differential equations with constant coefficients. Master’s Thesis. Sophia University (1972)

  • Akiyama, J.: The many facets of the middle graphs. In: Proceedings of Workshop on Combinatorial Structure and Graph Theory, vol. 259, pp. 72–118. RIMS, Kyoto University (1976)

  • Akiyama, J.: A status report on the linear arboricity. Graph Theory and Algorithms. Lecture Notes in Computer Science vol. 108, pp. 38–44. Springer, Berlin (1981)

  • Akiyama, J.: Reversible Solids: Bridging Mathematics and Art, Tokyo (2000)

  • Akiyama, J.: Mathematical Art in ICME 9, Makuhari (2000)

  • Akiyama, J., et al.: Why Mathematics? UNESCO, Paris (2004)

  • Akiyama, J.: You Can Be an Artist Like Escher. Ateneo de Manila University Quezon City (2006)

  • Akiyama, J.: Mathematical Circus in Madrid. http://www.eurocg.org/www.us.es/ewcg04/cosmoakiyama.pdf

  • Akiyama, J.: Popularizing math through mass media. In: Proceedings of the 10th MATH TED, Ateneo de Manila University Quezon City (2006)

  • Akiyama, J.: Mathematics for mass media. In: Proceedings of ICME 10, Copenhagen, 2006

  • Akiyama, J.: Tile makers and semi-tile makers. Am. Math. Mon. 114, 602–609 (2007)

    Google Scholar 

  • Akiyama, J., Alon, N.: Disjoint simplices and geometric hypergraphs. Combinatorial Mathematics. In: Proceedings of the Third International Conference. Ann. N.Y. Acad. Sci. 555, 1–3 (1989)

  • Akiyama, J., Ando, K., Avis, D.: Eccentric graphs. Discrete Math. 56(1), 1–6 (1985)

    Google Scholar 

  • Akiyama, J., Ando, K., Egawa, Y.: Graphs G for which both G and \(\overline{G}\) are contraction critically k-connected. Graphs Comb. 18(4), 693–708 (2002)

    Google Scholar 

  • Akiyama, J., Ando, K., Harary, F.: A graph and its complement with specified properties VIII: Interval graphs. Math. Jpn. 29(4), 659–670 (1984)

    Google Scholar 

  • Akiyama, J., Avis, D., Era, H.: On a {1,2}-factor of a graph. TRU Math. 16(2), 97–102 (1980)

    Google Scholar 

  • Akiyama, J., Chvátal, V.: A short proof of the linear arboricity for cubic graphs. Bull. Liber. Arts and Sci., vol. 2, pp. 1–3. Nippon Medical School (1981)

  • Akiyama, J., Chvátal, V.: Packing paths perfectly. Discrete Math. 85(3), 247–255 (1990)

    Google Scholar 

  • Akiyama, J., Era, H., Gervacio, S., Watanabe, M.: Path chromatic numbers of graphs. J. Graph Theory 13(5), 569–575 (1989)

    Google Scholar 

  • Akiyama, J., Exoo, G.: Suggested open problems by conference participants. In: The theory and applications of graphs, p. 609. Wiley-Interscience, New York (1981)

  • Akiyama, J., Exoo, G., Harary, F.: A graph and its complement with specified properties V: The Self-Complement Index. Mathematika 27(1), 64–68 (1980)

    Google Scholar 

  • Akiyama, J., Exoo, G., Harary, F.: Covering and packing in graphs III: Cyclic and acyclic invariants. Math. Slovaca 30(4), 405–417 (1980)

    Google Scholar 

  • Akiyama, J., Exoo, G., Harary, F.: Covering and packing in graphs IV: Linear arboricity. Networks 11(1), 69–72 (1981)

    Google Scholar 

  • Akiyama, J., Fukuda, H., Nakamura, G.: Universal measuring devices with rectangular base. Discrete and Computational Geometry, Lecture Notes in Computer Science vol. 2866, pp. 1–8. Springer, Berlin (2003)

  • Akiyama, J., Fukuda, H., Nakamura, G., Sakai, T., Urrutia, J., Zamora-Cura, C.: Universal measuring devices without gradations. Discrete and Computational Geometry, Lecture Notes in Computer Science vol. 2098, pp. 31–40. Springer, Berlin (2001)

  • Akiyama, J., Fukuda, H., Nara, C., Sakai, T., Urrutia, J.: Universal measuring boxes with triangle base. Am. Math. Mon. (in press)

  • Akiyama, J., Harary, F.: A graph and its complement with specified properties I: Connectivity. Int. J. Math. Math. Sci. 2(2), 223–228 (1979)

    Google Scholar 

  • Akiyama, J., Harary, F.: A graph and its complement with specified properties III: Girth and circumference. Int. J. Math. Math. Sci. 2(4), 685–692 (1979)

    Google Scholar 

  • Akiyama, J., Harary, F.: A graph and its complement with specified properties. IV: Counting self-complementary blocks. J. Graph Theory 5(1), 103–107 (1981)

    Google Scholar 

  • Akiyama, J., Hirata, K., Kobayashi, M., Nakamura, G.: Convex developments of a regular tetrahedron. Comput. Geometry Theory Appl. 34(1), 2–10 (2006)

    Google Scholar 

  • Akiyama, J., Hurtado, F., Merino, C., Urrutia, J.: A problem on hinged dissections with colours. Graphs Comb. 20(2), 145–159 (2004)

    Google Scholar 

  • Akiyama, J., Kano, M.: Path factors of a graph. In: Harary, F., Maybee, J.S. (eds.) Graphs and Applications, pp. 1–21. Wiley, New York (1982)

  • Akiyama, J., Kano, M.: Factors and factorizations of graphs—a survey. J. Graph Theory 9(1), 1–42 (1985)

    Google Scholar 

  • Akiyama, J., Kano, M.: Almost-regular factorization of graphs. J. Graph Theory 9(1), 123–128 (1985)

    Google Scholar 

  • Akiyama, J., Kano, M.: 1-factors of triangle graphs. In: Number Theory Comb. Tokyo 1984, pp. 21–35. World Scientific, Singapore (1985)

  • Akiyama, J., Kano, M.: Factors and factorizations of graphs. Electronic Book (2007)

  • Akiyama, J., Kano, M., Ruiz, M-J.: Tiling finite figures consisting of regular polygons. In: Proceedings of the 5th International Conference on Graph Theory and its Applications, pp. 1–13. Wiley-Interscience, New York (1985)

  • Akiyama, J., Nakamura, G.: An efficient dissection for a sequentially n-divisible square. In: Proceedings of Discrete and Computational Geometry Workshop ’97, pp. 80–89 (1997)

  • Akiyama, J., Nakamura, G.: A lesson on double packable solids. Teaching Mathematics and Its Applications, vol. 18(1), pp. 30–33. Oxford University Press, New York (1999)

    Google Scholar 

  • Akiyama, J., Nakamura, G.: Dudeney dissections of polygons. Discrete and Computational Geometry, Lecture Notes in Computer Science, vol. 1763, pp. 14–29. Springer, (2000)

  • Akiyama, J., Nakamura, G.: Dudeney dissections of polygons and polyhedrons: a survey. Discrete and Computational Geometry, Lecture Notes in Computer Science, vol. 2098, pp. 1–30. Springer, Berlin (2001)

  • Akiyama, J., Nakamura, G.: Congruent Dudeney dissections of triangles and convex quadrilaterals—all hinge points interior to the sides of the polygons. Discrete and Computational Geometry, The Goodman–Pollack Festschrift. In: Aronov, B., Basu, S., Pach, J., Sharir, M., (eds.) Algorithms and Combinatorics, vol. 25, pp. 43–63. Springer, New York (2003)

  • Akiyama, J., Nakamura, G.: Determination of all convex polygons which are chameleons—Congruent Dudeney dissections of polygons. IEICE TRANS. Fundamentals E86-A(5), 978–986 (2003)

  • Akiyama, J., Nakamura, G.: Foldings of regular polygons to convex polyhedra II: Regular pentagons. J. Indones. Math. Soc. (MIHMI) 9(2), 89–99 (2003)

    Google Scholar 

  • Akiyama, J., Nakamura, G.: Congruent Dudeney dissections of polygons—all the hinge points on vertices of the polygon. Discrete and Computational Geometry, Lecture Notes in Computer Science, vol. 2866, pp. 14–21. Springer, Berlin (2003)

  • Akiyama, J., Nakamura, G.: Foldings of regular polygons to convex polyhedra III: Regular hexagons and regular n-gons, n ≥ 7. Thai J. Math. 2(1), 1–14 (2004)

    Google Scholar 

  • Akiyama, J., Nakamura, G.: Foldings of regular polygons to convex polyhedra I: Equilateral triangles. Combinatorial Geometry and Graph Theory, Lecture Notes in Computer Science, vol. 3330, pp. 34–43. Springer, New York (2005)

  • Akiyama, J., Nakamura, G., Nozaki, A., Ozawa, K.: A note on the purely recursive dissection for a sequentially n-divisible square. Discrete and Computational Geometry, Lecture Notes in Computer Science, vol. 2098, pp. 41–52. Springer New York (2001)

  • Akiyama, J., Nakamura, G., Nozaki, A., Ozawa, K., Sakai, T.: The optimality of a certain purely recursive dissection for a sequentially n-divisible square. Comput. Geom. Theory Appl. 24(1), 27–39 (2003)

    Google Scholar 

  • Akiyama, J., Nara, C.: Infinite sequences for developments of tetrahedra. The Bulletin of the Higher Education Research Institute, vol. 13, pp. 11–24. Tokai University (2005)

  • Akiyama, J., Nara, C., Sakai, T.: What does it take to get students excited about mathematics? The Bulletin of the Higher Education Research Institute, vol. 10, pp. 15–27. Tokai University (2003)

  • Akiyama, J., Sakai, T.: Theorems and problems in basic geometry arisen from everyday life. The Bulletin of the Higher Education Research Institute, vol. 6, pp. 113–134. Tokai University (1998)

  • Akiyama, J., Sakai, T., Hirano, Y.: Nonstandard ways of teaching standard mathematics. In: Proceedings of the 8th Southeast Asian Conference on Mathematical Education, pp. 7–33. Ateneo de Manila University Press, Quezon city (1999)

  • Akiyama, J., Sakai, T., Torigoe, N., Watanabe, Y.: Nonstandard ways of teaching standard mathematics II—Miscellaneous properties of circles. The Bulletin of the Higher Education Research Institute, Tokai University, vol. 8, pp. 1–14 (2000)

  • Akiyama, J., Sakai, T., Urrutia, J.: Sequentially divisible dissections of simple polygons. Discrete and Computational Geometry, Lecture Notes in Computer Science, vol. 2098, pp. 53–66. Springer, New York (2001)

  • Akiyama, J., Torigoe, N.: Teaching probability distributions with a cradle pinball device. In: Proceedings of the 8th Southeast Asian Conference on Mathematical Education, pp. 69–75. Ateneo de Manila University Press, Quezon city (1999)

  • Akiyama, J., Urrutia, J.: A note on balanced colourings for lattice points. Discrete Math. 83(1), 123–126 (1990)

    Google Scholar 

  • Akiyama, J., Urrutia, J.: Simple alternating path problem. Discrete Math. 84(1), 101–103 (1990)

    Google Scholar 

  • Akiyama, J., Watanabe, M.: Maximum induced forests of planar graphs. Graphs Comb. Res. Prob. 3(2), 201–202 (1987)

    Google Scholar 

  • Albertson, M. O., Berman, D.: A conjecture on planar graphs. In: Bondy, J. A., Murty, U. S. R. (eds.) Graph Theory and Related Topics, vol. 357. Academic Press, New York (1979)

  • Albertson, M. O., Haas, R.: DIMACS meeting in the summer of 1998

  • Aleksandrov, A. D.: Konvexe Polyeder. Akademie, New York (1958)

  • Alexander, R., Dyson, H., O’Rourke, J.: The foldings of a square to convex polyhedra. Discrete and Computational Geometry, Lecture Notes in Computer Science vol. 2866, pp. 38–50 (2003)

  • Alon, N.: The linear arboricity of graphs. Israel J. Math. 62, 311–325 (1988)

    Google Scholar 

  • Amahashi, A., Kano, M.: On factors with given components. Discrete Math. 42(1), 1–6 (1982)

    Google Scholar 

  • Beck, J., Fiala, T.: Integer-making theorems. Discrete Appl. Math. 3(1), 1–8 (1981)

    Google Scholar 

  • Biedl, T. C., Čenek, E., Chan, T. M., Demaine, E. D., Demaine, M. L., Fleischer, R., Wang, M.- W.: Balanced k-colorings. Discrete Math. 254(1–3), 19–32 (2002)

  • Bolyai, F.: Tentamen juventutem, Typis Collegii Reformatorum per Josephum et Simeonem Kali (in Hungarian), 1832

  • Brass, P., Moser, W., Pach, J.: Research Problems in Discrete Geometry. Springer, Berlin (2005)

  • Coxeter, H. S. M.: Introduction to Geometry, Wiley, New York (1965)

  • Dudeney, H. E.: The Canterbury Puzzles and Other Curious Problems. W. Heinemann, 1907.

  • Egawa, Y.: Era’s conjecture on [k,k + 1]-factorizations of regular graphs. Ars Combin. 21, 217–220 (1986)

    Google Scholar 

  • Enomoto, H., Péroche, B.: The linear arboricity of some regular graphs. J. Graph Theory 8(2), 309–324 (1984)

    Google Scholar 

  • Era, H.: Semiregular factorizations of regular graphs. Graphs and applications, Boulder, Colo., 1982, pp. 101–116. Wiley Interscience, Wiley, New York (1985)

  • Frederickson, G. N.: Dissections: Plane and Fancy, Cambridge University Press, London (1997)

  • Frederickson, G. N.: Hinged Dissections: Swinging and Twisting, Cambridge University Press, London (2002)

  • Gerwien, P.: Zerschneidung jeder beliebigen Anzahl von Gleichen geradlinigen Figuren in dieselben Stücke. J. für die reine Angew. Math. (Crelle’s Journal) 10, 228–234 and Taf. III (1833)

  • Grötschel, M., Lovász, L., Schrijver, A.: Polynomial algorithms for perfect graphs. In: Berge, C., Chvátal, V. (eds.) Topics on Perfect Graphs. Ann. Discrete Math. 21, 325–356. North-Holland, Amsterdam (1984)

  • Klarner, D. A.: The Mathematical Gardner. Wadsworth International, Belmont (1981)

  • Larson, H.: Geometric Dissections. Van Nostrand, New York (1964)

  • Larson, L. C.: Problem-solving through problems, vol. 51, pp. 200–201. Springer, New York (1983)

  • Matsumoto, M.: Bounds for the vertex linear arboricity. J. Graph Theory 14, 117–126 (1990)

    Google Scholar 

  • Nash-Williams, C. St. J. A.: Decomposition of finite graphs into forests. J. London Math. Soc. 39, 12 (1964)

    Google Scholar 

  • Oka, H.: Be Brilliant as Long as You Live, (in Japanese) Fujin Seikatsusha, 1999

  • Pach, J., Töröcsik, J.: Some geometric applications of Dilworth’s theorem, Discrete Comput. Geom. 12, 1–7 (1994)

    Google Scholar 

  • Ruiz, M-J.: Mathematical art in Japan. http://www.eurocg.org/www.us.es/ewcg04/ mathlartinjapan.PDF

  • Salavatipour, M.R.: Large induced forests in triangle-free planar graphs. Graphs Comb. 22(1), 113–126 (2006)

    Google Scholar 

  • Tomasta, P.: Note on linear arboricity. Math. Slovaca 32, 239–242 (1982)

    Google Scholar 

  • Tóth, G.: Note on geometric graphs, J. Combin. Theory A 89, 126–132 (2000)

    Google Scholar 

  • Tutte, W. T.: The factors of graphs. Can. J. Math. 4, 314–328 (1952)

    Google Scholar 

  • Tutte, W. T.: The 1-factors of oriented graphs. Proc. Am. Math. Soc. 4, 922–931 (1953)

    Google Scholar 

  • Wallace, W. (ed.): Elements of Geometry (8th ed.), Bell & Bradfute, first six books of Euclid, with a supplement by John Playfair, 1831

  • Whitesides, S.: A method for solving certain graph recognition and optimization problems, with applications to perfect graphs. In: Berge, C., Chvátal, V. (eds.) Topics on Perfect Graphs. Ann. Discrete Math. 21, 281–297 North-Holland, Amsterdam (1984)

  • Wu, J-L.: On the linear arboricity of planar graphs. J. Graph Theory 31(2), 129–134 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kano, M., Ruiz, MJ.P. & Urrutia, J. Jin Akiyama: A Friend and His Mathematics. Graphs and Combinatorics 23 (Suppl 1), 1–39 (2007). https://doi.org/10.1007/s00373-007-0720-5

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-007-0720-5

Keywords

Navigation