Abstract
Jin’s story from three perspectives.
Similar content being viewed by others
References
Akiyama, J.: Factorization and linear arboricity of graphs, Doctor of Science Thesis. Tokyo University of Science (1982)
Akiyama, J.: S-wellposedness of partial differential equations with constant coefficients. Master’s Thesis. Sophia University (1972)
Akiyama, J.: The many facets of the middle graphs. In: Proceedings of Workshop on Combinatorial Structure and Graph Theory, vol. 259, pp. 72–118. RIMS, Kyoto University (1976)
Akiyama, J.: A status report on the linear arboricity. Graph Theory and Algorithms. Lecture Notes in Computer Science vol. 108, pp. 38–44. Springer, Berlin (1981)
Akiyama, J.: Reversible Solids: Bridging Mathematics and Art, Tokyo (2000)
Akiyama, J.: Mathematical Art in ICME 9, Makuhari (2000)
Akiyama, J., et al.: Why Mathematics? UNESCO, Paris (2004)
Akiyama, J.: You Can Be an Artist Like Escher. Ateneo de Manila University Quezon City (2006)
Akiyama, J.: Mathematical Circus in Madrid. http://www.eurocg.org/www.us.es/ewcg04/cosmoakiyama.pdf
Akiyama, J.: Popularizing math through mass media. In: Proceedings of the 10th MATH TED, Ateneo de Manila University Quezon City (2006)
Akiyama, J.: Mathematics for mass media. In: Proceedings of ICME 10, Copenhagen, 2006
Akiyama, J.: Tile makers and semi-tile makers. Am. Math. Mon. 114, 602–609 (2007)
Akiyama, J., Alon, N.: Disjoint simplices and geometric hypergraphs. Combinatorial Mathematics. In: Proceedings of the Third International Conference. Ann. N.Y. Acad. Sci. 555, 1–3 (1989)
Akiyama, J., Ando, K., Avis, D.: Eccentric graphs. Discrete Math. 56(1), 1–6 (1985)
Akiyama, J., Ando, K., Egawa, Y.: Graphs G for which both G and \(\overline{G}\) are contraction critically k-connected. Graphs Comb. 18(4), 693–708 (2002)
Akiyama, J., Ando, K., Harary, F.: A graph and its complement with specified properties VIII: Interval graphs. Math. Jpn. 29(4), 659–670 (1984)
Akiyama, J., Avis, D., Era, H.: On a {1,2}-factor of a graph. TRU Math. 16(2), 97–102 (1980)
Akiyama, J., Chvátal, V.: A short proof of the linear arboricity for cubic graphs. Bull. Liber. Arts and Sci., vol. 2, pp. 1–3. Nippon Medical School (1981)
Akiyama, J., Chvátal, V.: Packing paths perfectly. Discrete Math. 85(3), 247–255 (1990)
Akiyama, J., Era, H., Gervacio, S., Watanabe, M.: Path chromatic numbers of graphs. J. Graph Theory 13(5), 569–575 (1989)
Akiyama, J., Exoo, G.: Suggested open problems by conference participants. In: The theory and applications of graphs, p. 609. Wiley-Interscience, New York (1981)
Akiyama, J., Exoo, G., Harary, F.: A graph and its complement with specified properties V: The Self-Complement Index. Mathematika 27(1), 64–68 (1980)
Akiyama, J., Exoo, G., Harary, F.: Covering and packing in graphs III: Cyclic and acyclic invariants. Math. Slovaca 30(4), 405–417 (1980)
Akiyama, J., Exoo, G., Harary, F.: Covering and packing in graphs IV: Linear arboricity. Networks 11(1), 69–72 (1981)
Akiyama, J., Fukuda, H., Nakamura, G.: Universal measuring devices with rectangular base. Discrete and Computational Geometry, Lecture Notes in Computer Science vol. 2866, pp. 1–8. Springer, Berlin (2003)
Akiyama, J., Fukuda, H., Nakamura, G., Sakai, T., Urrutia, J., Zamora-Cura, C.: Universal measuring devices without gradations. Discrete and Computational Geometry, Lecture Notes in Computer Science vol. 2098, pp. 31–40. Springer, Berlin (2001)
Akiyama, J., Fukuda, H., Nara, C., Sakai, T., Urrutia, J.: Universal measuring boxes with triangle base. Am. Math. Mon. (in press)
Akiyama, J., Harary, F.: A graph and its complement with specified properties I: Connectivity. Int. J. Math. Math. Sci. 2(2), 223–228 (1979)
Akiyama, J., Harary, F.: A graph and its complement with specified properties III: Girth and circumference. Int. J. Math. Math. Sci. 2(4), 685–692 (1979)
Akiyama, J., Harary, F.: A graph and its complement with specified properties. IV: Counting self-complementary blocks. J. Graph Theory 5(1), 103–107 (1981)
Akiyama, J., Hirata, K., Kobayashi, M., Nakamura, G.: Convex developments of a regular tetrahedron. Comput. Geometry Theory Appl. 34(1), 2–10 (2006)
Akiyama, J., Hurtado, F., Merino, C., Urrutia, J.: A problem on hinged dissections with colours. Graphs Comb. 20(2), 145–159 (2004)
Akiyama, J., Kano, M.: Path factors of a graph. In: Harary, F., Maybee, J.S. (eds.) Graphs and Applications, pp. 1–21. Wiley, New York (1982)
Akiyama, J., Kano, M.: Factors and factorizations of graphs—a survey. J. Graph Theory 9(1), 1–42 (1985)
Akiyama, J., Kano, M.: Almost-regular factorization of graphs. J. Graph Theory 9(1), 123–128 (1985)
Akiyama, J., Kano, M.: 1-factors of triangle graphs. In: Number Theory Comb. Tokyo 1984, pp. 21–35. World Scientific, Singapore (1985)
Akiyama, J., Kano, M.: Factors and factorizations of graphs. Electronic Book (2007)
Akiyama, J., Kano, M., Ruiz, M-J.: Tiling finite figures consisting of regular polygons. In: Proceedings of the 5th International Conference on Graph Theory and its Applications, pp. 1–13. Wiley-Interscience, New York (1985)
Akiyama, J., Nakamura, G.: An efficient dissection for a sequentially n-divisible square. In: Proceedings of Discrete and Computational Geometry Workshop ’97, pp. 80–89 (1997)
Akiyama, J., Nakamura, G.: A lesson on double packable solids. Teaching Mathematics and Its Applications, vol. 18(1), pp. 30–33. Oxford University Press, New York (1999)
Akiyama, J., Nakamura, G.: Dudeney dissections of polygons. Discrete and Computational Geometry, Lecture Notes in Computer Science, vol. 1763, pp. 14–29. Springer, (2000)
Akiyama, J., Nakamura, G.: Dudeney dissections of polygons and polyhedrons: a survey. Discrete and Computational Geometry, Lecture Notes in Computer Science, vol. 2098, pp. 1–30. Springer, Berlin (2001)
Akiyama, J., Nakamura, G.: Congruent Dudeney dissections of triangles and convex quadrilaterals—all hinge points interior to the sides of the polygons. Discrete and Computational Geometry, The Goodman–Pollack Festschrift. In: Aronov, B., Basu, S., Pach, J., Sharir, M., (eds.) Algorithms and Combinatorics, vol. 25, pp. 43–63. Springer, New York (2003)
Akiyama, J., Nakamura, G.: Determination of all convex polygons which are chameleons—Congruent Dudeney dissections of polygons. IEICE TRANS. Fundamentals E86-A(5), 978–986 (2003)
Akiyama, J., Nakamura, G.: Foldings of regular polygons to convex polyhedra II: Regular pentagons. J. Indones. Math. Soc. (MIHMI) 9(2), 89–99 (2003)
Akiyama, J., Nakamura, G.: Congruent Dudeney dissections of polygons—all the hinge points on vertices of the polygon. Discrete and Computational Geometry, Lecture Notes in Computer Science, vol. 2866, pp. 14–21. Springer, Berlin (2003)
Akiyama, J., Nakamura, G.: Foldings of regular polygons to convex polyhedra III: Regular hexagons and regular n-gons, n ≥ 7. Thai J. Math. 2(1), 1–14 (2004)
Akiyama, J., Nakamura, G.: Foldings of regular polygons to convex polyhedra I: Equilateral triangles. Combinatorial Geometry and Graph Theory, Lecture Notes in Computer Science, vol. 3330, pp. 34–43. Springer, New York (2005)
Akiyama, J., Nakamura, G., Nozaki, A., Ozawa, K.: A note on the purely recursive dissection for a sequentially n-divisible square. Discrete and Computational Geometry, Lecture Notes in Computer Science, vol. 2098, pp. 41–52. Springer New York (2001)
Akiyama, J., Nakamura, G., Nozaki, A., Ozawa, K., Sakai, T.: The optimality of a certain purely recursive dissection for a sequentially n-divisible square. Comput. Geom. Theory Appl. 24(1), 27–39 (2003)
Akiyama, J., Nara, C.: Infinite sequences for developments of tetrahedra. The Bulletin of the Higher Education Research Institute, vol. 13, pp. 11–24. Tokai University (2005)
Akiyama, J., Nara, C., Sakai, T.: What does it take to get students excited about mathematics? The Bulletin of the Higher Education Research Institute, vol. 10, pp. 15–27. Tokai University (2003)
Akiyama, J., Sakai, T.: Theorems and problems in basic geometry arisen from everyday life. The Bulletin of the Higher Education Research Institute, vol. 6, pp. 113–134. Tokai University (1998)
Akiyama, J., Sakai, T., Hirano, Y.: Nonstandard ways of teaching standard mathematics. In: Proceedings of the 8th Southeast Asian Conference on Mathematical Education, pp. 7–33. Ateneo de Manila University Press, Quezon city (1999)
Akiyama, J., Sakai, T., Torigoe, N., Watanabe, Y.: Nonstandard ways of teaching standard mathematics II—Miscellaneous properties of circles. The Bulletin of the Higher Education Research Institute, Tokai University, vol. 8, pp. 1–14 (2000)
Akiyama, J., Sakai, T., Urrutia, J.: Sequentially divisible dissections of simple polygons. Discrete and Computational Geometry, Lecture Notes in Computer Science, vol. 2098, pp. 53–66. Springer, New York (2001)
Akiyama, J., Torigoe, N.: Teaching probability distributions with a cradle pinball device. In: Proceedings of the 8th Southeast Asian Conference on Mathematical Education, pp. 69–75. Ateneo de Manila University Press, Quezon city (1999)
Akiyama, J., Urrutia, J.: A note on balanced colourings for lattice points. Discrete Math. 83(1), 123–126 (1990)
Akiyama, J., Urrutia, J.: Simple alternating path problem. Discrete Math. 84(1), 101–103 (1990)
Akiyama, J., Watanabe, M.: Maximum induced forests of planar graphs. Graphs Comb. Res. Prob. 3(2), 201–202 (1987)
Albertson, M. O., Berman, D.: A conjecture on planar graphs. In: Bondy, J. A., Murty, U. S. R. (eds.) Graph Theory and Related Topics, vol. 357. Academic Press, New York (1979)
Albertson, M. O., Haas, R.: DIMACS meeting in the summer of 1998
Aleksandrov, A. D.: Konvexe Polyeder. Akademie, New York (1958)
Alexander, R., Dyson, H., O’Rourke, J.: The foldings of a square to convex polyhedra. Discrete and Computational Geometry, Lecture Notes in Computer Science vol. 2866, pp. 38–50 (2003)
Alon, N.: The linear arboricity of graphs. Israel J. Math. 62, 311–325 (1988)
Amahashi, A., Kano, M.: On factors with given components. Discrete Math. 42(1), 1–6 (1982)
Beck, J., Fiala, T.: Integer-making theorems. Discrete Appl. Math. 3(1), 1–8 (1981)
Biedl, T. C., Čenek, E., Chan, T. M., Demaine, E. D., Demaine, M. L., Fleischer, R., Wang, M.- W.: Balanced k-colorings. Discrete Math. 254(1–3), 19–32 (2002)
Bolyai, F.: Tentamen juventutem, Typis Collegii Reformatorum per Josephum et Simeonem Kali (in Hungarian), 1832
Brass, P., Moser, W., Pach, J.: Research Problems in Discrete Geometry. Springer, Berlin (2005)
Coxeter, H. S. M.: Introduction to Geometry, Wiley, New York (1965)
Dudeney, H. E.: The Canterbury Puzzles and Other Curious Problems. W. Heinemann, 1907.
Egawa, Y.: Era’s conjecture on [k,k + 1]-factorizations of regular graphs. Ars Combin. 21, 217–220 (1986)
Enomoto, H., Péroche, B.: The linear arboricity of some regular graphs. J. Graph Theory 8(2), 309–324 (1984)
Era, H.: Semiregular factorizations of regular graphs. Graphs and applications, Boulder, Colo., 1982, pp. 101–116. Wiley Interscience, Wiley, New York (1985)
Frederickson, G. N.: Dissections: Plane and Fancy, Cambridge University Press, London (1997)
Frederickson, G. N.: Hinged Dissections: Swinging and Twisting, Cambridge University Press, London (2002)
Gerwien, P.: Zerschneidung jeder beliebigen Anzahl von Gleichen geradlinigen Figuren in dieselben Stücke. J. für die reine Angew. Math. (Crelle’s Journal) 10, 228–234 and Taf. III (1833)
Grötschel, M., Lovász, L., Schrijver, A.: Polynomial algorithms for perfect graphs. In: Berge, C., Chvátal, V. (eds.) Topics on Perfect Graphs. Ann. Discrete Math. 21, 325–356. North-Holland, Amsterdam (1984)
Klarner, D. A.: The Mathematical Gardner. Wadsworth International, Belmont (1981)
Larson, H.: Geometric Dissections. Van Nostrand, New York (1964)
Larson, L. C.: Problem-solving through problems, vol. 51, pp. 200–201. Springer, New York (1983)
Matsumoto, M.: Bounds for the vertex linear arboricity. J. Graph Theory 14, 117–126 (1990)
Nash-Williams, C. St. J. A.: Decomposition of finite graphs into forests. J. London Math. Soc. 39, 12 (1964)
Oka, H.: Be Brilliant as Long as You Live, (in Japanese) Fujin Seikatsusha, 1999
Pach, J., Töröcsik, J.: Some geometric applications of Dilworth’s theorem, Discrete Comput. Geom. 12, 1–7 (1994)
Ruiz, M-J.: Mathematical art in Japan. http://www.eurocg.org/www.us.es/ewcg04/ mathlartinjapan.PDF
Salavatipour, M.R.: Large induced forests in triangle-free planar graphs. Graphs Comb. 22(1), 113–126 (2006)
Tomasta, P.: Note on linear arboricity. Math. Slovaca 32, 239–242 (1982)
Tóth, G.: Note on geometric graphs, J. Combin. Theory A 89, 126–132 (2000)
Tutte, W. T.: The factors of graphs. Can. J. Math. 4, 314–328 (1952)
Tutte, W. T.: The 1-factors of oriented graphs. Proc. Am. Math. Soc. 4, 922–931 (1953)
Wallace, W. (ed.): Elements of Geometry (8th ed.), Bell & Bradfute, first six books of Euclid, with a supplement by John Playfair, 1831
Whitesides, S.: A method for solving certain graph recognition and optimization problems, with applications to perfect graphs. In: Berge, C., Chvátal, V. (eds.) Topics on Perfect Graphs. Ann. Discrete Math. 21, 281–297 North-Holland, Amsterdam (1984)
Wu, J-L.: On the linear arboricity of planar graphs. J. Graph Theory 31(2), 129–134 (1999)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kano, M., Ruiz, MJ.P. & Urrutia, J. Jin Akiyama: A Friend and His Mathematics. Graphs and Combinatorics 23 (Suppl 1), 1–39 (2007). https://doi.org/10.1007/s00373-007-0720-5
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/s00373-007-0720-5