[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A nightshade crop leaf disease detection using enhance-nightshade-CNN for ground truth data

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In the fast-growing agricultural world, early detection of plant diseases is crucial for maintaining crop health and ensuring successful harvests. Advancements in computer vision technology have led to the development of advanced methods for diagnosing plant diseases. However, factors like lighting, weather, and the number of diseases in a single image can make it difficult to detect plant diseases. Traditional deep learning-based algorithms have drawbacks, such as high hardware investment, inference speed, and generalization. This research article aims to raise awareness among farmers about cutting-edge technology for detecting plant leaf disease in nightshade crops. The Enhance-Nightshade-CNN model was used to enhance the quality of nightshade crop leaf disease samples, achieving good accuracy compared to existing algorithms. The model accurately identified healthy and unhealthy leaves in the real environment, with ground truth results showing a 95–100% accuracy rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

Plant Village repository was used for the laboratory dataset and for the real dataset we have used the google agriculture images.

Code availability

Proposed CNN models has been implemented in python with the OpenCV environment and executed on Google colab environment.

References

  1. Shoaib, M., Shah, B., Ali, A., Ullah, A., Alenezi, F., Gechev, T., Hussain, T., Ali, F.: An advanced deep learning models-based plant disease detection: a review of recent research. Front. Plant Sci. 14, 1158933 (2023). https://doi.org/10.3389/fpls.2023.1158933

    Article  Google Scholar 

  2. Lucas, G.B., Campbell, C.L., Lucas, L.T.: Introduction to plant diseases, p. 2006. AVI Publish. Co., Schuman GL, D’Arcy CJ, The (1985)

    Google Scholar 

  3. Shirahatti, J., Patil, R., and Akulwar, P.: A survey paper on plant disease identification using machine learning approach. In: 2018 3rd International Conference on Communication and Electronics Systems (ICCES) (pp. 1171–1174). IEEE. (2018). https://doi.org/10.1109/CESYS.2018.8723881.

  4. Liu, L., et al.: A disease index for efficiently detecting wheat fusarium head blight using sentinel-2 multispectral imagery. IEEE Access 8, 52181–52191 (2020). https://doi.org/10.1109/ACCESS.2020.2980310

    Article  Google Scholar 

  5. Prasad, R., Ranjan, K.R., Sinha, A.K.: AMRAPALIKA: an expert system for the diagnosis of pests, diseases, and disorders in Indian mango. Knowl.-Based Syst. 19(1), 9–21 (2006). https://doi.org/10.1016/j.knosys.2005.08.001

    Article  Google Scholar 

  6. Singh, V., Misra, A.K.: Detection of plant leaf diseases using image segmentation and soft computing techniques. Inf Process Agric 4(1), 41–49 (2017). https://doi.org/10.1016/j.inpa.2016.10.005

    Article  Google Scholar 

  7. Afifi, A., Alhumam, A., Abdelwahab, A.: Convolutional neural network for automatic identification of plant diseases with limited data. Plants 10, 28 (2021). https://doi.org/10.3390/plants10010028

    Article  Google Scholar 

  8. Mugithe, P. K., Mudunuri, R. V., Rajasekar, B., & Karthikeyan, S.: Image processing technique for automatic detection of plant diseases and alerting system in agricultural farms. In: 2020 International Conference on Communication and Signal Processing (ICCSP) (pp. 1603–1607). IEEE. (2020) https://doi.org/10.1109/ICCSP48568.2020.9182065.

  9. Parikshith, H., Naga Rajath, S. M., and Pavan Kumar, S. P.: Leaf disease detection using image processing and artificial intelligence–a survey. In: Computational Vision and Bio-Inspired Computing: ICCVBIC 2019 (pp. 304–311). Springer International Publishing. (2020). https://doi.org/10.1007/978-3-030-37218-7_35.

  10. Sethy, P.K., Barpanda, N.K., Rath, A.K., Behera, S.K.: Deep feature based rice leaf disease identification using support vector machine. Comput. Electron. Agric. 175, 105527 (2020). https://doi.org/10.1016/j.compag.2020.105527

    Article  Google Scholar 

  11. Mitra, D.: Emerging plant diseases: research status and challenges. Emerg Trends Plant Pathol (2021). https://doi.org/10.1007/978-981-15-6275-4_1

    Article  Google Scholar 

  12. Ferentinos, K.P.: Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agric. 145, 311–318 (2018). https://doi.org/10.1016/j.compag.2018.01.009

    Article  Google Scholar 

  13. Ramcharan, A., Baranowski, K., McCloskey, P., Ahmed, B., Legg, J., Hughes, D.P.: Deep learning for image-based cassava disease detection. Front. Plant Sci. 8, 293051 (2017). https://doi.org/10.3389/fpls.2017.01852

    Article  Google Scholar 

  14. Vadivel, T., Suguna, R.: Automatic recognition of tomato leaf disease using fast enhanced learning with image processing. Acta Agric Scandinavica, Sect B Soil Plant Sci 72(1), 312–324 (2022)

    Google Scholar 

  15. Sardogan, M., Tuncer, A., and Ozen, Y.: Plant leaf disease detection and classification based on CNN with LVQ algorithm. In: 2018 3rd International Conference on Computer Science and Engineering (UBMK) (pp. 382–385). IEEE. (2018). https://doi.org/10.1109/UBMK.2018.8566635.

  16. Dhakate, M., & Ingole, A. B.: Diagnosis of pomegranate plant diseases using neural network. In: 2015 Fifth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG) (pp. 1–4). IEEE. (2015). https://doi.org/10.1109/NCVPRIPG.2015.7490056.

  17. Sujithra, J., and Ukrit, M. F.: CRUN-based leaf disease segmentation and morphological-based stage identification. Math Probl Eng (2022).https://doi.org/10.1155/2022/2546873.

  18. Francis, J., and Anoop, B. K.: Identification of leaf diseases in pepper plants using soft computing techniques. In: 2016 conference on emerging devices and smart systems (ICEDSS) (pp. 168–173). IEEE. (2016) https://doi.org/10.1109/ICEDSS.2016.7587787.

  19. Sannakki, S. S., Rajpurohit, V. S., Nargund, V. B., and Kulkarni, P.: Diagnosis and classification of grape leaf diseases using neural networks. In: 2013 Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT) (pp. 1–5). IEEE. (2013). https://doi.org/10.1109/ICCCNT.2013.6726616.

  20. Sankaran, S., Mishra, A., Ehsani, R., Davis, C.: A review of advanced techniques for detecting plant diseases. Comput. Electron. Agric. 72(1), 1–13 (2010). https://doi.org/10.1016/j.compag.2010.02.007

    Article  Google Scholar 

  21. Lu, L., Xiaoting, Y., Bo, D.: A fast segmentation algorithm of pet images based on visual saliency model. Procedia Comput Sci 92, 361–370 (2016). https://doi.org/10.1016/j.procs.2016.07.391

    Article  Google Scholar 

  22. Lucas, G. B., Campbell, C. L., and Lucas, L. T.: Introduction to plant diseases: identification and management. Springer Science and Business Media (1992)

  23. Albahli, S., Masood, M.: Efficient attention-based CNN network (EANet) for multi-class maize crop disease classification. Front. Plant Sci. 13, 1003152 (2022). https://doi.org/10.3389/fpls.2022.1003152

    Article  Google Scholar 

  24. Diaz-Arias, A., Shin, D.: ConvFormer: parameter reduction in transformer models for 3D human pose estimation by leveraging dynamic multi-headed convolutional attention. Vis. Comput. (2023). https://doi.org/10.1007/s00371-023-02936-5

    Article  Google Scholar 

  25. Ashwinkumar, S., Rajagopal, S., Manimaran, V., Jegajothi, B.: Automated plant leaf disease detection and classification using optimal MobileNet based convolutional neural networks. Mater Today: Proceed 51, 480–487 (2022). https://doi.org/10.1016/j.matpr.2021.05.584

    Article  Google Scholar 

  26. Hyvärinen, A.: Independent component analysis: recent advances. Philosoph Trans Royal Soc: Math Phys Eng Sci 371(1984), 20110534 (2013). https://doi.org/10.1098/rsta.2011.0534

    Article  MathSciNet  Google Scholar 

  27. Jagiello, K., Grzonkowska, M., Swirog, M., et al.: Advantages and limitations of classic and 3D QSAR approach in nano-QSAR studies based on biological activity of fullerene derivatives. J. Nanopart. Res. 18, 256 (2016). https://doi.org/10.1007/s11051-016-3564-1"

    Article  Google Scholar 

  28. Jadhav, S., Lal, A.M.: Multi-class plant leaf disease detection using a deep convolutional neural network. Int J Inf Syst Model Des (IJISMD) 13(1), 1–14 (2022). https://doi.org/10.4018/IJISMD.315126

    Article  Google Scholar 

  29. Sladojevic, S., Arsenovic, M., Anderla, A., Culibrk, D., and Stefanovic, D.: Deep neural networks based recognition of plant diseases by leaf image classification. Comput. Intell. Neurosci. (2016). https://doi.org/10.1155/2016/3289801

  30. Tang, Y., Qiu, J., Zhang, Y., et al.: Optimization strategies of fruit detection to overcome the challenge of unstructured background in field orchard environment: a review. Precision Agric. 24, 1183–1219 (2023). https://doi.org/10.1007/s11119-023-10009-9

    Article  Google Scholar 

  31. Joshi, B.M., Bhavsar, H.: Plant leaf disease detection and control: a survey. J. Inf. Optim. Sci. 41(2), 475–487 (2020). https://doi.org/10.1080/02522667.2020.1734295

    Article  Google Scholar 

  32. Joshi, B. M., & Bhavsar, H.: Lycopersicon crop leaf disease identification using deep learning. In: International Conference on Sustainable and Innovative Solutions for Current Challenges in Engineering and Technology (pp. 15–32). Singapore: Springer Nature Singapore. (2022)

  33. Joshi, B.M., Bhavsar, H.: Deep learning technology based night-CNN for nightshade crop leaf disease detection. Int J Intell Syst Appl Eng 11(1), 215–227 (2023)

    Google Scholar 

  34. Pandian, J.A., Kumar, V.D., Geman, O., Hnatiuc, M., Arif, M., Kanchanadevi, K.: Plant disease detection using deep convolutional neural network. Appl. Sci. 12, 6982 (2022). https://doi.org/10.3390/app12146982

    Article  Google Scholar 

  35. Pantazi, X.E., Tamouridou, A.A., Alexandridis, T.K., Lagopodi, A.L., Kontouris, G., Moshou, D.: Detection of Silybum marianum infection with Microbotryum silybum using VNIR field spectroscopy. Comput. Electron. Agric. 137, 130–137 (2017). https://doi.org/10.1016/j.compag.2017.03.017

    Article  Google Scholar 

  36. Li, S., Feng, Z., Yang, B., Li, H., Liao, F., Gao, Y., Liu, S., Tang, J., Yao, Q.: An intelligent monitoring system of diseases and pests on rice canopy. Front. Plant Sci. 13, 972286 (2022). https://doi.org/10.3389/fpls.2022.972286

    Article  Google Scholar 

  37. Pearson, K.: LIII. On lines and planes of closest fit to systems of points in space. London, Edinburgh, Dublin Philosoph Magaz J Sci 2(11), 559–572 (1901)

    Article  Google Scholar 

  38. Hu, X., Chu, L., Pei, J., et al.: Model complexity of deep learning: a survey. Knowl. Inf. Syst. 63, 2585–2619 (2021). https://doi.org/10.1007/s10115-021-01605-0

    Article  Google Scholar 

  39. Hassan, S.M., Maji, A.K., Jasiński, M., Leonowicz, Z., Jasińska, E.: Identification of plant-leaf diseases using cnn and transfer-learning approach. Electronics 10, 1388 (2021). https://doi.org/10.3390/electronics10121388

    Article  Google Scholar 

  40. Singh, V., and Misra, A. K.: Detection of unhealthy region of plant leaves using image processing and genetic algorithm. In: 2015 International Conference on Advances in Computer Engineering and Applications (pp. 1028–1032). IEEE. (2015). https://doi.org/10.1109/ICACEA.2015.7164858.

  41. Guadagna, P., Fernandes, M., Chen, F., et al.: Using deep learning for pruning region detection and plant organ segmentation in dormant spur-pruned grapevines. Precision Agric. 24, 1547–1569 (2023). https://doi.org/10.1007/s11119-023-10006-y

    Article  Google Scholar 

  42. Rathod, A. N., Tanawal, B., and Shah, V.: Image processing techniques for detection of leaf disease. Int J Adv Res Comput Sci Softw Eng, 3(11), (2013)

  43. Patil, J.K., Kumar, R.: Advances in image processing for detection of plant diseases. J Adv Bioinf Appl Res 2(2), 135–141 (2011)

    Google Scholar 

  44. Camargo, A., Smith, J.S.: An image-processing based algorithm to automatically identify plant disease visual symptoms. Biosyst. Eng. 102(1), 9–21 (2009). https://doi.org/10.1016/j.biosystemseng

    Article  Google Scholar 

  45. Arivazhagan, S., Shebiah, R.N., Ananthi, S., Varthini, S.V.: Detection of unhealthy region of plant leaves and classification of plant leaf diseases using texture features. Agric. Eng. Int. CIGR J. 15(1), 211–217 (2013)

    Google Scholar 

  46. Woebbecke, D.M., Meyer, G.E., Von Bargen, K., Mortensen, D.A.: Color indices for weed identification under various soil, residue, and lighting conditions. Trans. Am. Soc. Agric. Eng. 38(1), 259–269 (1995)

    Article  Google Scholar 

  47. Suykens, J., Vandewalle, J.: Least squares support vector machine classifiers. Neural. Process. Lett. 9, 293–300 (1999). https://doi.org/10.1023/A:1018628609742

    Article  Google Scholar 

  48. Duan, GR.: Analysis and design of descriptor linear systems (Vol. 23). Springer Science and Business Media. (2010)

  49. Chen, J., Ma, Z.: Locally linear embedding: a review. Int. J. Pattern Recognit Artif Intell. 25(07), 985–1008 (2011). https://doi.org/10.1142/S0218001411008993

    Article  MathSciNet  Google Scholar 

  50. Chai, R.: Otsu’s image segmentation algorithm with memory-based fruit fly optimization algorithm. Complexity 2021, 1–11 (2021). https://doi.org/10.1155/2021/5564690

    Article  Google Scholar 

  51. Raju, D., Joseph, P.: Motion detection and optical flow. Int J Comput Sci Inf Technol 5(4), 5716–5719 (2014)

    Google Scholar 

  52. Reshma, S., IIHansa JT: Graph cuts and active contours for texture aware image segmentation. Int J Adv Res Comput Sci Technol 2(2), 176–180 (2014)

    Google Scholar 

  53. Amoda, N., Kulkarni, R.K.: Efficient image segmentation using watershed transform. Int J Comput Sci Technol 4(2), 214–218 (2013)

    Google Scholar 

  54. Samet, R., Hancer, E.: A new approach to the reconstruction of contour lines extracted from topographic maps. J Vis Commun Imag Represent 23(4), 642–647 (2012)

    Article  Google Scholar 

  55. Wang, J., Li, M., Dziatkovskii, A., Hryneuski, U., Krylova, A.: Research on contour feature extraction method of multiple sports images based on nonlinear mechanics. Nonlin Eng 11(1), 347–354 (2022). https://doi.org/10.1515/nleng-2022-0037

    Article  Google Scholar 

  56. Islam, M., Dinh, A., Wahid, K., and Bhowmik, P.: Detection of potato diseases using image segmentation and multiclass support vector machine. In: 2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE) (pp. 1–4). IEEE (2017). https://doi.org/10.1109/CCECE.2017.7946594.

Download references

Funding

Not Applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barkha M. Joshi.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethics approval

Not Applicable.

Consent to participate

Not Applicable.

Consent for publication

Dataset images we have used from the plant village repository.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, B.M., Bhavsar, H. A nightshade crop leaf disease detection using enhance-nightshade-CNN for ground truth data. Vis Comput 40, 5639–5658 (2024). https://doi.org/10.1007/s00371-023-03127-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-023-03127-y

Keywords

Navigation