[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Enhancing infrared images via multi-resolution contrast stretching and adaptive multi-scale detail boosting

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Infrared imaging technology has attracted numerous interests in military, security, transportation, etc. However, infrared images suffer from low contrast and blurry detail, limiting its application. To handle these issues, this paper presents a novel approach based on multi-resolution contrast stretching and adaptive multi-scale detail boosting. Specifically, the hybrid-spatial Gamma function can create the high-brightness feature map; multi-resolution analysis fully discovers the information in different screen resolutions for reconstructing the high-contrast feature map, i.e., the weighted adaptive limited contrast histogram equalization stretches the image’s approximate map and the hybrid Gamma function and histogram processes the detailed maps at different directions; the edge-preserving Gaussian blurring function can fully explore the details at different scale space for yielding the feature map with clearer details. Finally, the Laplace pyramid fuses different feature maps obeying the image-matching degree and average gradient to reconstruct pleasing visual images. Extensive experiments have shown that our method has an average increased by 13.0411, 1.6737, 23.3651, and 20.8085 in terms of average gradient (AG), information entropy (IE), enhancement by IE (EME), and image sharpness (IS), respectively, which is a proven approach for infrared image enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Liu, G., Liu, Q., Fang, H., Chen, X.: Robust total variation-based destriping model via sparse representation learning for business infrared imaging systems. Infrared Phys. Technol. 121, 104005 (2022)

    Article  Google Scholar 

  2. Xing, S., Kublitski, J., Hänisch, C., Winkler, L.C., Li, T.-Y., Kleemann, H., Benduhn, J., Leo, K.: Photomultiplication-type organic photodetectors for near-infrared sensing with high and bias-independent specific detectivity. Adv. Sci. 9, 2105113 (2022)

    Article  Google Scholar 

  3. Kwan, C., Budavari, B.: A high-performance approach to detecting small targets in long-range low-quality infrared videos. SIViP 16(1), 93–101 (2022)

    Article  Google Scholar 

  4. Wang, Y., Peng, C., Liu, D., Wang, N., Gao, X.: Forgerynir: deep face forgery and detection in near-infrared scenario. IEEE Trans. Inf. Forensics Secur. 17, 500–515 (2022)

    Article  Google Scholar 

  5. Huang, Z., Li, X., Wang, L., Fang, H., Ma, L., Shi, Y., Hong, H.: Spatially adaptive multi-scale image enhancement based on nonsubsampled contourlet transform. Infrared Phys. Technol. 121, 104014 (2022)

    Article  Google Scholar 

  6. Dong, L.L., Ding, C., Wen-Hai, X.U.: Two improved methods based on histogram equalization for image enhancement. Acta Electron. Sinica 46, 2367 (2018)

    Google Scholar 

  7. Bhandari, A.K., Srinivas, K., Maurya, S.: Gamma corrected reflectance for low contrast image enhancement using guided filter. Multimed. Tools Appl. 81, 6009–6030 (2022)

    Article  Google Scholar 

  8. Chen, W., Jia, Z., Yang, J., Kasabov, N.K.: Multispectral image enhancement based on the dark channel prior and bilateral fractional differential model. Remote Sens. 14(1), 233 (2022)

    Article  Google Scholar 

  9. Bhandari, A.K., Singh, N., Singh, A.: Swarm-based optimally selected histogram computation system for image enhancement. Neural Comput. Appl. 34, 7053–7067 (2022)

    Article  Google Scholar 

  10. Da, P., Song, G., Shi, P., Zhang, H.: Perceptual quality assessment of nighttime video. Displays 70, 102092 (2021)

    Article  Google Scholar 

  11. Mannam, V., Zhang, Y., Zhu, Y., Nichols, E., Wang, Q., Sundaresan, V., Zhang, S., Smith, C., Bohn, P.W., Howard, S.S.: Real-time image denoising of mixed Poisson–Gaussian noise in fluorescence microscopy images using ImageJ. Optica 9(4), 335–345 (2022)

    Article  Google Scholar 

  12. Qin, Z., Zeng, Q., Zong, Y., Xu, F.: Image inpainting based on deep learning: a review. Displays 69, 102028 (2021)

    Article  Google Scholar 

  13. Yin, Jia-Li., Chen, Bo-Hao., Peng, Yan-Tsung., Tsai, Chung-Chi.: Deep battery saver: end-to-end learning for power constrained contrast enhancement. IEEE Trans. Multimed. 23, 1049–1059 (2020)

    Article  Google Scholar 

  14. Lu, H., Liu, Z., Pan, X.: An adaptive detail equalization for infrared image enhancement based on multi-scale convolution. IEEE Access 8, 156763–156773 (2020)

    Article  Google Scholar 

  15. Paul, A., Bhattacharya, P., Maity, S.P.: Histogram modification in adaptive bi-histogram equalization for contrast enhancement on digital images. Optik 259, 168899 (2022)

    Article  Google Scholar 

  16. Wang, Y., Cai, J., Zhang, D., Chen, X., Wang, Y.: Nonlinear correction for fringe projection profilometry with shifted-phase histogram equalization. IEEE Trans. Instrum. Meas. 71, 5005509 (2022)

    Google Scholar 

  17. Suresha, M., Raghukumar, D., Kuppa, S.: Kumaraswamy distribution based bi-histogram equalization for enhancement of microscopic images. Int. J. Image Graphics 22(01), 2250003 (2022)

    Article  Google Scholar 

  18. Hinder, F., Vaquet, V., Hammer, B.: Suitability of different metric choices for concept drift detection. In: Bouadi, T., Fromont, E., Hüllermeier, E. (eds.) Adv. Intell. Data Anal., pp. 157–170. Springer, Cham (2022)

    Google Scholar 

  19. Goh, H.H., He, R., Zhang, D., Liu, H., Dai, W., Lim, C.S., Kurniawan, T.A., Teo, K.T.K., Goh, K.C.: A multimodal approach to chaotic renewable energy prediction using meteorological and historical information. Appl. Soft Comput. 118, 108487 (2022)

    Article  Google Scholar 

  20. Fu, X., Liao, Y., Zeng, D., Huang, Y., Zhang, X.-P., Ding, X.: A probabilistic method for image enhancement with simultaneous illumination and reflectance estimation. IEEE Trans. Image Process. 24(12), 4965–4977 (2015)

    Article  MathSciNet  Google Scholar 

  21. Reza, A.M.: Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement. J. VLSI Signal Process. Syst. Signal, Image Video Technol. 38(1), 35–44 (2004)

    Article  Google Scholar 

  22. Alhaidery, M.M.A., Taherinia, A.H., Yazdi, H.S.: Cloning detection scheme based on linear and curvature scale space with new false positive removal filters. Multimed. Tools Appl. 81(6), 8745–8766 (2022)

    Article  Google Scholar 

  23. Yang, D., Zhao, H., Han, T.: Learning feature-rich integrated comprehensive context networks for automated fundus retinal vessel analysis. Neurocomputing 491, 132–143 (2022)

    Article  Google Scholar 

  24. Wu, H., Xu, R., Xu, K., Zhao, J., Zhang, Y., Wang, A., Iwahori, Y.: 3d texture reconstruction of abdominal cavity based on monocular vision slam for minimally invasive surgery. Symmetry 14(2), 185 (2022)

    Article  Google Scholar 

  25. Kalake, L., Dong, Y., Wan, W., Hou, L.: Enhancing detection quality rate with a combined hog and CNN for real-time multiple object tracking across non-overlapping multiple cameras. Sensors 22(6), 2123 (2022)

    Article  Google Scholar 

  26. Huang, Shih-Chia., Cheng, Fan-Chieh., Chiu, Yi-Sheng.: Efficient contrast enhancement using adaptive gamma correction with weighting distribution. IEEE Trans. Image Process. 22(3), 1032–1041 (2013)

    Article  MathSciNet  Google Scholar 

  27. Wang, Yuanbin, Zhang, J.: An improved infrared image contrast enhancement method. J. Phys.: Conf. Series 1302, 042019 (2019)

    Google Scholar 

  28. Kaur, P., Khehra, B.S., Pharwaha, A.P.S.: Color image enhancement based on gamma encoding and histogram equalization. Mater. Today: Proc. 46, 4025–4030 (2021)

    Google Scholar 

  29. Acharya, U.K., Kumar, S.: Swarm intelligence based adaptive gamma corrected (SIAGC) retinal image enhancement technique for early detection of diabetic retinopathy. Optik 247, 167904 (2021)

    Article  Google Scholar 

  30. Subramani, B., Veluchamy, M.: Quadrant dynamic clipped histogram equalization with gamma correction for color image enhancement. Color Res. Appl. 45(4), 644–655 (2020)

    Article  Google Scholar 

  31. Jebadass, J.R., Balasubramaniam, P.: Low contrast enhancement technique for color images using interval-valued intuitionistic fuzzy sets with contrast limited adaptive histogram equalization. Soft. Comput. 26, 4949–4960 (2022)

    Article  Google Scholar 

  32. KATIRCIO\(\breve{{{\rm G}}}\)LU, F., CİNGİZ, Z.: A novel gray image enhancement using the regional similarity transformation function and dragonfly algorithm. El-Cezeri J. Sci. Eng. 7(3), 1201–1219 (2020)

  33. Nnolim, U.A.: Single image de-hazing via multiscale wavelet decomposition and estimation with fractional gradient-anisotropic diffusion fusion. Int. J. Image Graphics 21(03), 2150032 (2021)

    Article  Google Scholar 

  34. Kou, F., Chen, W., Wen, C., Li, Z.: Gradient domain guided image filtering. IEEE Trans. Image Process. 24(11), 4528–4539 (2015)

    Article  MathSciNet  Google Scholar 

  35. Sharma, R., Ravinder, M., Sharma, N., Sharma, K.: An optimal remote sensing image enhancement with weak detail preservation in wavelet domain. J. Ambient Intell. Humaniz. Comput. 13, 1941–1952 (2021)

    Article  Google Scholar 

  36. Sujatha, M., Srilekha, G., Tina, K., Tulasi, T.S., Harish, K.: Image enhancement using wavelet based image fusion and power law transform. J. Comput. Theor. Nanosci. 17(5), 2405–2408 (2020)

    Article  Google Scholar 

  37. Bulut, F., Oruç, Ö., Esen, A.: Higher order Haar wavelet method integrated with strang splitting for solving regularized long wave equation. Math. Comput. Simul. 197, 277–290 (2022)

    Article  MathSciNet  Google Scholar 

  38. Liu, C., Zhao, G., Dong, J., Lin, Y., Wang, M.: MIE-NSCT: Adaptive MRI enhancement based on nonsubsampled contourlet transform. Math. Probl. Eng. 2021, 6681202 (2021)

    Google Scholar 

  39. Xu, Linli, Liang, Peixian, Han, Jing, Bai, Lianfa, Chen, Danny Z.: Global filter of fusing near-infrared and visible images in frequency domain for defogging. IEEE Signal Process. Lett. 29, 1953–1957 (2022)

    Article  Google Scholar 

  40. Ravikumar, M., Shivaprasad, B., Guru, D.: Enhancement of MRI brain images using notch filter based on discrete wavelet transform. Int. J. Image Graphics 22(01), 2250010 (2022)

    Article  Google Scholar 

  41. Zhang, X.: Image denoising using multidirectional gradient domain. Multimed. Tools Appl. 80(19), 29745–29763 (2021)

    Article  Google Scholar 

  42. Wang, Y., Li, X., Zhu, R., Wang, Z., Feng, Y., Zhang, X.: A multi-focus image fusion framework based on multi-scale sparse representation in gradient domain. Signal Process. 189, 108254 (2021)

    Article  Google Scholar 

  43. Bai, Xiangzhi, Zhou, Fugen, Xue, Bindang: Infrared image enhancement through contrast enhancement by using multiscale new top-hat transform. Infrared Phys. Technol. 54(2), 61–69 (2011)

    Article  Google Scholar 

  44. Luo, Jiawei, Zhang, Yanmei: Infrared Image Enhancement Algorithm based on Weighted Guided Filtering. In: 2021 IEEE 2nd International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA), vol. 2, pp. 332–336 (2021)

  45. Chen, Bo-Hao., Wu, Yu-Ling., Shi, Ling-Feng.: A fast image contrast enhancement algorithm using entropy-preserving mapping prior. IEEE Trans. Circuits Syst. Video Technol. 29(1), 38–49 (2017)

    Article  Google Scholar 

  46. Kim, Y., Koh, Y.J., Lee, C., Kim, S., Kim, C.-S.: Dark image enhancement based onpairwise target contrast and multi-scale detail boosting. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 1404–1408 (2015). IEEE

  47. Fan, G., Hua, Z., Li, J.: Multi-scale depth information fusion network for image dehazing. Appl. Intell. 51(10), 7262–7280 (2021)

    Article  Google Scholar 

  48. Qian, K., Tian, L., Liu, Y., Wen, X., Bao, J.: Image robust recognition based on feature-entropy-oriented differential fusion capsule network. Appl. Intell. 51(2), 1108–1117 (2021)

    Article  Google Scholar 

  49. Herrera-Arellano, M., Peregrina-Barreto, H., Terol-Villalobos, I.: Visible-NIR image fusion based on top-hat transform. IEEE Trans. Image Process. 30, 4962–4972 (2021)

    Article  Google Scholar 

  50. Xianhong, L., Zhibin, C.: Fusion of infrared and visible images based on multi-scale directional guided filter and convolutional sparse representation. Acta Optica Sinica 37(11), 1110004 (2017)

    Article  Google Scholar 

  51. Ying, Z., Li, G., Ren, Y., Wang, R., Wang, W.: A new image contrast enhancement algorithm using exposure fusion framework. In: International Conference on Computer Analysis of Images and Patterns, pp. 36–46. Springer (2017)

  52. Qu, Z., Huang, X., Liu, L.: An improved algorithm of multi-exposure image fusion by detail enhancement. Multimed. Syst. 27(1), 33–44 (2021)

    Article  Google Scholar 

  53. Luo, Y., He, K., Xu, D., Yin, W., Liu, W.: Infrared and visible image fusion based on visibility enhancement and hybrid multiscale decomposition. Optik 258, 168914 (2022)

    Article  Google Scholar 

  54. Ravirathinam, P., Goel, D., Ranjani, J.J.: C-LIENet: a multi-context low-light image enhancement network. IEEE Access 9, 31053–31064 (2021)

    Article  Google Scholar 

  55. Zhang, J., Dou, Q., Liu, J., Su, Y., Sun, W.: BE-ACGAN: photo-realistic residual bit-depth enhancement by advanced conditional GAN. Displays 69, 102040 (2021)

    Article  Google Scholar 

  56. Wang, B., Dong, L., Zhao, M., Xu, W.: A small dim infrared maritime target detection algorithm based on local peak detection and pipeline-filtering. In: Seventh International Conference on Graphic and Image Processing (ICGIP 2015), vol. 9817, pp. 188–193 (2015). SPIE

  57. Yang, C., He, Y., Sun, C., Jiang, S., Li, Y., Zhao, P.: Infrared and visible image fusion based on QNSCT and guided filter. Optik 253, 168592 (2022)

    Article  Google Scholar 

  58. Nickfarjam, A.M., Ebrahimpour-Komleh, H.: Multi-resolution gray-level image enhancement using particle swarm optimization. Appl. Intell. 47(4), 1132–1143 (2017)

    Article  Google Scholar 

  59. Zhang, H., Qian, W., Wan, M., Zhang, K.: Infrared image enhancement algorithm using local entropy mapping histogram adaptive segmentation. Infrared Phys. Technol. 120, 104000 (2022)

    Article  Google Scholar 

  60. Singh, D., Kumar, V., Kaur, M.: Single image dehazing using gradient channel prior. Appl. Intell. 49(12), 4276–4293 (2019)

    Article  Google Scholar 

  61. Lu, Z., Long, B., Li, K., Lu, F.: Effective guided image filtering for contrast enhancement. IEEE Signal Process. Lett. 25(10), 1585–1589 (2018)

    Article  Google Scholar 

  62. Wan, M., Gu, G., Qian, W., Ren, K., Chen, Q., Maldague, X.: Infrared image enhancement using adaptive histogram partition and brightness correction. Remote Sens. 10(5), 682 (2018)

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China under grants (61866009, 62002082), the Guangxi Science and Technology Project (AB21220037), the Guangxi Natural Science Foundation under grants (2020GXNSFBA238014, 2020GXNSFAA297061), and the Innovation Project of Guangxi Graduate Education (YCBZ2022112).

Author information

Authors and Affiliations

Authors

Contributions

HL contributed to the methodology, writing—original draft preparation and resources; ZL was involved in the funding acquisition and supervision; RL assisted in the funding acquisition and writing—review and editing; XP contributed to the funding acquisition and writing—review and editing; WW was involved in writing—review and editing.

Corresponding author

Correspondence to Zhenbing Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, H., Liu, Z., Pan, X. et al. Enhancing infrared images via multi-resolution contrast stretching and adaptive multi-scale detail boosting. Vis Comput 40, 53–71 (2024). https://doi.org/10.1007/s00371-022-02765-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-022-02765-y

Keywords