[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Abnormalities detection in wireless capsule endoscopy images using EM algorithm

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In this paper, a novel method is proposed to detect common abnormalities in Wireless Capsule Endoscopy (WCE) video frames including Lymphoid Hyperplasia, ulcer, and angiodysplasia lesions. Inspecting WCE video frames to detect abnormality is a tedious task for physicians. One important step in the proposed approach is to extract the region of interest (ROI), i.e., suspicious region, using the expectation–maximization (EM) algorithm. Suspicious regions in WCE frames are segmented using the EM algorithm considering the color and texture information of the image. Then, suitable descriptors associated with the shape, texture, and color of ROIs are examined for further analysis. These descriptors include histogram of gradients for shape, local binary patterns for texture and different statistical characteristics from pixel values for color information. These features are then fed to a support-vector machine for classification. The results show that the proposed approach can detect abnormalities in WCE frames with the accuracy of 91.3%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Availability of data and material

The first dataset analyzed during the current study is available in the GIANA challenge, [https://endovissub2017-giana.grand-challenge.org/]. The second dataset analyzed during the current study is available in the public dataset KID repository, [https://mdss.uth.gr/datasets/endoscopy/kid/].

Code availability

Not available.

Notes

  1. https://github.com/Farah-Deeba/Angiectasia-Detection

References

  1. Gobpradit, S., Vateekul, P.: Segmentation on capsule endoscopy images using AlbuNet with squeeze-and-excitation blocks. In: Intelligent Information and Database Systems (2020).

  2. Vieira, P., Silva, C., Costa, D.: Automatic segmentation and detection of small bowel angioectasias in WCE images. Ann. Biomed. Eng. 47, 1446–1462 (2019)

    Article  Google Scholar 

  3. Regula, J., Wronska, E., Pachlewski, J.: Vascular lesions of the gastrointestinal tract. Best Pract. Res. Clin. Gastroenterol. 22(2), 313–328 (2008)

    Article  Google Scholar 

  4. Yuan, Y., Wang, J., Li, B., Meng, M.Q.H.: Saliency based ulcer detection for wireless capsule endoscopy diagnosis. IEEE Trans. Med. Imaging 34(10), (2015).

  5. Souaidi, M., Abdelouahed, A.A., El Ansari, M.: Multi-scale completed local binary patterns for ulcer detection in wireless capsule endoscopy images. Multimed. Tools Appl. 78(10), 13091–13108 (2019)

    Article  Google Scholar 

  6. Iwamuro, M., Hiraoka, S., Okada, H., Kawai, Y., Miyabe, Y., Takata, K., Yamamoto, K.: Lymphoid hyperplasia of the colon and its association with underlying allergic airway diseases. Int. J. Colorectal Dis. 31(2), 313–317 (2016)

    Article  Google Scholar 

  7. Khuroo, M., Khuroo, N., Khuroo, M.: Diffuse duodenal nodular lymphoid hyperplasia: a large cohort of patients etiologically related to helicobacter pylori infection. BMC Gastroenterol. 11(36), 1–11 (2011)

    Google Scholar 

  8. Voderholzer, W.A., Beinhoelzl, J., Rogalla, P., Murrer, S., Schachschal, G., Lochs, H., Ortner, M.A.: Small bowel involvement in Crohn’s disease: a prospective comparison of wireless capsule endoscopy and computed tomography enteroclysis. Gut 54(3), 369–373 (2005)

    Article  Google Scholar 

  9. Deeba, F., Mohammed, S.K., Bui, F.M., Wahid, K.A.: A saliency-sased unsupervised method for angiectasia detection in endoscopic video frames. J. Med. Biol. Eng. 3(3), 325–335 (2018)

    Article  Google Scholar 

  10. Mohammed, A., Farup, I., Pedersen, M., Hovde, Q., Yildirim Yayilgan, S.: Stochastic capsule endoscopy image enhancement. J. Imaging 4(6), 75 (2018)

    Article  Google Scholar 

  11. Amiri, Z., Hassanpour, H., Beghdadi, A.: A computer-aided method to detect bleeding frames in capsule endoscopy images. In: 8th European Workshop on Visual Information Processing, pp. 217–221 (2019).

  12. Amiri, Z., Hassanpour, H., Beghdadi, A.: Feature selection for bleeding detection in capsule endoscopy images using genetic algorithm. In: 5th Iranian Conference on Signal Processing and Intelligent Systems (2019).

  13. Usman, M., Satrya, G., Usman, M., Shin, S.: Detection of small colon bleeding in wireless capsule endoscopy videos. Comput. Med. Imaging Graph. 9(5), 16–26 (2016)

    Article  Google Scholar 

  14. Jia, X., Meng, Q.-H. M.: A Study on automated segmentation of blood regionsin wireless capsule endoscopy images using fully convolutional networks. In: IEEE 14th International Symposium on Biomedical Imaging (2017).

  15. Vieira, P.M., Gonçalves, B., Gonçalves, C.R., Lima, C.S.: Segmentation of angiodysplasia lesions in WCE images using a MAP approach with Markov random field. In: IEEE 38th Annual International Conference of the Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA (2016).

  16. Wu, X., Chen, H., Gan, T., Chen, J., Ngo, C.-W., Peng, Q.: Automatic hookworm detection in wireless capsule endoscopy images. IEEE Trans. Med. Imaging 35(7), 1741–1752 (2016)

    Article  Google Scholar 

  17. Fan, S., Xu, L., Fan, Y., Wei, K., Li, L.: Computer-aided detection of small intestinal ulcer and erosion in wireless capsule endoscopy images. Phys. Med. Biol. 63(16), 1–25 (2018)

    Article  Google Scholar 

  18. Naz, J., Sharif, M., Raza, M., Shah, J.H., Yasmin, M., Kadry, S., Vimal, S.: Recognizing gastrointestinal malignancies on WCE and CCE images by an ensemble of deep and handcrafted features with entropy and PCA based features optimization. Neural Process. Lett. 53(4), 1–26 (2021)

    Google Scholar 

  19. Charfi, S., Ansari, M.E., Balasingham, I.: Computer-aided diagnosis system for ulcer detection in wireless capsule endoscopy image. IET Image Proc. 13(6), 1023–1030 (2019)

    Article  Google Scholar 

  20. Walker, H.F., Ni, P.: Anderson acceleration for fixed-point iterations. SIAM J. Numer. Anal. 49(4), 1715–1735 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Noya, F., Alvarez-Gonzalez, M.A., Benitez, R.: Automated angiodysplasia detection from wireless capsule endoscopy. In: 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (2017).

  22. Chang, K.Y., Liu, T.L., Chen, H.T., Lai, S.H.: Fusing generic objectness and visual saliency for salient object detection. In: 2011 International Conference on Computer Vision, pp. 914–921 (2011).

  23. Margolin, R., Tal, A., Zelnik-Manor, L.: What makes a patch distinct? In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1139–1146 (2013).

  24. Kanafani, Q., Beghdadi, A.: Segmentation of medical images using a mixture model and morphological filtering. In: 10th European Signal Processing Conference, pp. 1–4, (2000).

  25. Ming, Y., Wang, G., Fan, C.: Uniform local binary pattern based texture-edge feature for 3D human behavior recognition. PLoS ONE 10(5), 1–19 (2015)

    Article  Google Scholar 

  26. Ajam, A., Forghani, M., AlyanNezhadi, M.M., Qazanfari, H., Amiri, Z.: Content-based image retrieval using color difference histogram in image textures. In: 5th Iranian Conference on Signal Processing and Intelligent Systems (ICSPIS), IEEE, (2019).

  27. AlyanNezhadi, M.M., Qazanfari, H., Ajam, A., Amiri, Z.: Content-based image retrieval considering colour difference histogram of image texture and edge orientation. Int. J. Eng. 33(5), 949–958 (2020)

    Google Scholar 

  28. Hazgui, M., Ghazouani, H., Barhoumi, W.: Genetic programming-based fusion of HOG and LBP features for fully automated texture classification. Vis. Comput 38, 457–476 (2022)

    Article  Google Scholar 

  29. Constantinescu, A.F., Ionescu, M., Rogoveanu, I., Ciurea, M.E., Streba, C.T., Iovanescu, V.F., Vere, C.C.: Analysis of wireless capsule endoscopy images using local binary patterns. Appl. Med. Inform. 36(2), 31–42 (2015)

    Google Scholar 

  30. Nawarathna, R., Oh, J., Muthukudage, J., Tavanapong, W., Wong, J., De Groen, P.C., Tang, S.J.: Abnormal image detection in endoscopy videos using a filter bank and local binary patterns. Neurocomputing 144, 70–91 (2014)

    Article  Google Scholar 

  31. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2005).

  32. Ayadi, W., Charfi, I., Elhamzi, W., Atri, M.: Brain tumor classification based on hybrid approach. Vis. Comput. 38, 107–117 (2022)

    Article  Google Scholar 

  33. Zhao, J., Wang, S.H., Liu, X., Liu, Y., Chen, Y.Q.: Early diagnosis of cirrhosis via automatic location and geometric description of liver capsule. Vis. Comput. 34(12), 1677–1689 (2018)

    Article  Google Scholar 

  34. “Gastrointestinal image Analysis” 2018. [Online]. Available: https://giana.grand-challenge.org/Home/.

  35. Koulaouzidis, A., Iakovidis, D.K., Yung, D.E., Rondonotti, E., Kopylov, U., Plevris, J.N., Tontini, G.E.: KID project: an internet-based digital video atlas of capsule endoscopy for research purposes. Endosc. Int. Open 5(6), 477–483 (2017)

    Article  Google Scholar 

  36. Smedsrud, P.H., Thambawita, V., Hicks, S.A., Gjestang, H., Nedrejord, O.O., Næss, E., Halvorsen, P.: Kvasir-Capsule, a video capsule endoscopy dataset 2020. Sci. Data 8(1), 1–10 (2021)

    Article  Google Scholar 

  37. Yuan, Y., Li, B., Meng, M.Q.H.: Bleeding frame and region detection in the wireless capsule endoscopy video. IEEE J. Biomed. Health Inform. 20(2), 624–630 (2015)

    Article  Google Scholar 

  38. Shvets, A.A., Iglovikov, V.I., Rakhlin, A., Kalinin, A.A.: Angiodysplasia detection and localization using deep convolutional neural networks. In: 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 612–617 (2018).

Download references

Funding

We have no financial interests to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Hassanpour.

Ethics declarations

Conflict of interest

We have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amiri, Z., Hassanpour, H. & Beghdadi, A. Abnormalities detection in wireless capsule endoscopy images using EM algorithm. Vis Comput 39, 2999–3010 (2023). https://doi.org/10.1007/s00371-022-02507-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-022-02507-0

Keywords

Navigation