[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Automatic embroidery texture synthesis for garment design and online display

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We introduce an automatic texture synthesis-based framework to convert an arbitrary input image into embroidery style art for garment design and online display. Given an input image and some reference textures, we first extract key embroidery regions from the input image using image segmentation. Each segmented region is single-colored and labeled with a stitch style automatically. We then fill these regions with embroidery reference textures via a stitch-style-based texture synthesis method. For each region, our approach maintains color similarity before and after synthesis, along with stitch style consistency. Compared to existing approaches, our method is able to generate digital embroidery patterns with faithful details automatically. Moreover, it can accept diverse input images effectively, enabling a fast preview of the embroidery patterns synthesized on digital garments interactively, and therefore accelerating the workflow from design to production. We validate our method through extensive experimentation and comparison.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.B.: Patchmatch: a randomized correspondence algorithm for structural image editing. ACM Trans. Graph. 28(3), 24 (2009)

    Article  Google Scholar 

  2. Barnes, C., Shechtman, E., Goldman, D.B., Finkelstein, A.: The generalized patchmatch correspondence algorithm. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) Computer Vision—ECCV 2010, 11th European Conference on Computer Vision, Heraklion, Crete, Greece, September 5–11, 2010, Proceedings, Part III, Lecture Notes in Computer Science, vol. 6313, pp. 29–43. Springer (2010)

  3. Barnes, C., Zhang, F.: A survey of the state-of-the-art in patch-based synthesis. Comput. Vis. Media 3(1), 3–20 (2017)

    Article  Google Scholar 

  4. Barnes, C., Zhang, F., Lou, L., Wu, X., Hu, S.: Patchtable: efficient patch queries for large datasets and applications. ACM Trans. Graph. 34(4), 97:1–97:10 (2015)

    Article  Google Scholar 

  5. Chang, H., Fried, O., Liu, Y., DiVerdi, S., Finkelstein, A.: Palette-based photo recoloring. ACM Trans. Graph. 34(4), 139:1–139:11 (2015)

    Article  Google Scholar 

  6. Chen, T.Q., Schmidt, M.: Fast patch-based style transfer of arbitrary style. (2016). arXiv:1612.04337

  7. Chen, X., McCool, M., Kitamoto, A., Mann, S.: Embroidery modeling and rendering. In: Brooks, S., Hawkey, K. (eds.) Proceedings of the Graphics Interface 2012 Conference, GI ’12, Toronto, ON, Canada, May 28–30, 2012, pp. 131–139. ACM (2012)

  8. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)

    Article  Google Scholar 

  9. Cui, D., Sheng, Y., Zhang, G.: Image-based embroidery modeling and rendering. Comput. Animat. Virtual Worlds 28(2), e1725 (2017)

  10. Delong, A., Osokin, A., Isack, H.N., Boykov, Y.: Fast approximate energy minimization with label costs. Int. J. Comput. Vis. 96(1), 1–27 (2012)

    Article  MathSciNet  Google Scholar 

  11. Efros, A. A., Freeman, W. T.: Image quilting for texture synthesis and transfer. In: Pocock, L. (ed.) Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 2001, Los Angeles, California, USA, August 12–17, 2001, pp. 341–346. ACM (2001)

  12. Epshtein, B., Ofek, E., Wexler, Y.: Detecting text in natural scenes with stroke width transform. In: The Twenty-Third IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2010, San Francisco, CA, USA, 13–18 June 2010, pp. 2963–2970. IEEE Computer Society (2010)

  13. Gatys, L.A., Ecker, A.S., Bethge, M.: A neural algorithm of artistic style. (2015). arXiv:1508.06576

  14. Gatys, L.A., Ecker, A.S., Bethge, M.: Texture synthesis using convolutional neural networks. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems 28: Annual Conference on Neural Information Processing Systems 2015, December 7–12, 2015, Montreal, Quebec, Canada, pp. 262–270 (2015)

  15. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A.C., Bengio, Y.: Generative adversarial networks. (2014). arXiv:1406.2661

  16. Hertzmann, A., Jacobs, C.E., Oliver, N., Curless, B., Salesin, D.: Image analogies. In: Pocock, L. (ed.) Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 2001, Los Angeles, California, USA, August 12–17, 2001, pp. 327–340. ACM (2001)

  17. Isola, P., Zhu, J., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21–26, 2017, pp. 5967–5976. IEEE Computer Society (2017)

  18. Jing, Y., Yang, Y., Feng, Z., Ye, J., Yu, Y., Song, M.: Neural style transfer: a review. IEEE Trans. Vis. Comput. Graph. 26(11), 3365–3385 (2020)

    Article  Google Scholar 

  19. Kyprianidis, J.E., Collomosse, J.P., Wang, T., Isenberg, T.: State of the “art”: a taxonomy of artistic stylization techniques for images and video. IEEE Trans. Vis. Comput. Graph. 19(5), 866–885 (2013)

  20. Li, X., Liu, S., Kautz, J., Yang, M.: Learning linear transformations for fast arbitrary style transfer. (2018). arXiv:1808.04537

  21. Ma, C., Sun, Z.: Stitchgeneration: modeling and creation of random-needle embroidery based on Markov chain model. Multim. Tools Appl. 78(23), 34065–34094 (2019)

    Article  Google Scholar 

  22. Men, Y., Lian, Z., Tang, Y., Xiao, J.: A common framework for interactive texture transfer. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18–22, 2018, pp. 6353–6362. IEEE Computer Society (2018)

  23. Qian, W., Cao, J., Xu, D., Nie, R., Guan, Z., Zheng, R.: Cnn-based embroidery style rendering. Int. J. Pattern Recognit. Artif. Intell. 34(14), 2059,045:1–2059,045:24 (2020)

    Article  Google Scholar 

  24. Qian, W., Xu, D., Cao, J., Guan, Z., Pu, Y.: Aesthetic art simulation for embroidery style. Multimed. Tools Appl. 78(1), 995–1016 (2019)

    Article  Google Scholar 

  25. Shen, Q., Cui, D., Sheng, Y., Zhang, G.: Illumination-preserving embroidery simulation for non-photorealistic rendering. In: MultiMedia Modeling—23rd International Conference, MMM 2017, Reykjavik, Iceland, January 4–6, 2017, Proceedings, Part II, Lecture Notes in Computer Science, vol. 10133, pp. 233–244. Springer (2017)

  26. Yang, K., Sun, Z.: Paint with stitches: a style definition and image-based rendering method for random-needle embroidery. Multimed. Tools Appl. 77(10), 12259–12292 (2018)

    Article  Google Scholar 

  27. Yang, K., Zhou, J., Sun, Z., Li, Y.: Image-based irregular needling embroidery rendering. In: Qu, H., Chen, W., Cox, P.T., Liu, S. (eds.) The International Symposium on Visual Information Communication and Interaction, VINCI ’12, Hangzhou, China–September 27–28, 2012, pp. 87–94. ACM (2012)

  28. Yang, S., Liu, J., Lian, Z., Guo, Z.: Awesome typography: Statistics-based text effects transfer. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21–26, 2017, pp. 2886–2895. IEEE Computer Society (2017)

  29. Yang, S., Liu, J., Yang, W., Guo, Z.: Context-aware unsupervised text stylization. In: Boll, S., Lee, K.M., Luo, J., Zhu, W., Byun, H., Chen, C.W., Lienhart, R., Mei, T. (eds.) 2018 ACM Multimedia Conference on Multimedia Conference, MM 2018, Seoul, Republic of Korea, October 22–26, 2018, pp. 1688–1696. ACM (2018)

  30. Zhang, T.Y., Suen, C.Y.: A fast parallel algorithm for thinning digital patterns. Commun. ACM 27(3), 236–239 (1984)

    Article  Google Scholar 

  31. Zhao, Y., Jin, X., Xu, Y., Zhao, H., Ai, M., Zhou, K.: Parallel style-aware image cloning for artworks. IEEE Trans. Vis. Comput. Graph. 21(2), 229–240 (2015)

    Article  Google Scholar 

  32. Zhou, Y., Shi, H., Lischinski, D., Gong, M., Kopf, J., Huang, H.: Analysis and controlled synthesis of inhomogeneous textures. Comput. Graph. Forum 36(2), 199–212 (2017)

    Article  Google Scholar 

  33. Zhu, J., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22–29, 2017, pp. 2242–2251. IEEE Computer Society (2017)

Download references

Acknowledgements

We thank the anonymous reviewers for their constructive comments. Xiaogang Jin was supported by the National Key R&D Program of China (Grant No. 2017YFB1002600), the National Natural Science Foundation of China (Grant No. 61732015), the Ningbo Major Special Projects of the “Science and Technology Innovation 2025” (Grant No. 2020Z007), and the Key Research and Development Program of Zhejiang Province (Grant No. 2018C01090).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaogang Jin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 8358 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, X., Luo, L., Li, H. et al. Automatic embroidery texture synthesis for garment design and online display. Vis Comput 37, 2553–2565 (2021). https://doi.org/10.1007/s00371-021-02216-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-021-02216-0

Keywords

Navigation