Abstract
Given that existing salient object detection methods cannot effectively predict the fine contours of salient objects when extracting local or global contexts and features, we propose a novel contour self-compensated network (CSCNet) to generate a more accurate saliency map with complete contour. Unlike the common binary saliency detection, we reconstruct the salient object detection problem into a multi-classification problem of the background, the salient object, and the salient contour, where the salient contour is used as the third label for ground truth. Meanwhile, the image and its superpixel map are concatenated as the input of our network to add more edge information. Also, a penalty loss is proposed to restrict the spatial relationship between the background, objects, and their contours. Experimentally, we evaluate the proposed CSCNet on six benchmark datasets in both accuracy and efficiency and evaluate the attribute-based performance on the SOC dataset. Compared with 13 state-of-the-art algorithms, our CSCNet can detect salient objects more accurately and completely without adding too many convolutional layers and parameters.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)
Achanta, R., Hemami, S., Estrada, F., Susstrunk, S.: Frequency-tuned salient region detection. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1597–1604. IEEE (2009)
Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33, 898–916 (2011)
Borji, A., Cheng, M., Jiang, H., Li, J.: Salient object detection: a benchmark. IEEE Trans. Image Process. 24(12), 5706–5722 (2015)
Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)
Chen, S., Tan, X., Wang, B., Hu, X.: Reverse attention for salient object detection. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 234–250 (2018)
Deng, Z., Hu, X., Zhu, L., Xu, X., Qin, J., Han, G., Heng, P.-A.: R3net: Recurrent residual refinement network for saliency detection. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence, pp. 684–690. AAAI Press (2018)
Fan, D.-P., Cheng, M.-M., Liu, J.-J., Gao, S.-H., Hou, Q., Borji, A.: Salient objects in clutter: bringing salient object detection to the foreground. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 186–202 (2018)
Fan, D.-P., Cheng, M.-M., Liu, Y., Li, T., Borji, A.: Structure-measure: a new way to evaluate foreground maps. In: IEEE International Conference on Computer Vision (ICCV), pp. 4548–4557. IEEE (2017)
Fan, D.-P., Wang, W., Cheng, M.-M., Shen, J.: Shifting more attention to video salient object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8554–8564 (2019)
Feng, M., Lu, H., Ding, E.: Attentive feedback network for boundary-aware salient object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1623–1632 (2019)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Hou, Q., Cheng, M.-M., Hu, X., Borji, A., Tu, Z., Torr, P.H.S.: Deeply supervised salient object detection with short connections, pp. 3203–3212 (2017)
Lee, H., Kim, D.: Salient region-based online object tracking. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1170–1177, March (2018)
Li, G., Xie, Y., Lin, L., Yu, Y.: Instance-level salient object segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 247–256. IEEE (2017)
Li, G., Yu, Y.: Visual saliency based on multiscale deep features. In: Proceedings of the IEEE Conference On Computer Vision and Pattern Recognition, pp. 5455–5463 (2015)
Li, G., Yu, Y.: Deep contrast learning for salient object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 478–487 (2016)
Li, R., Cai, J., Zhang, H., Wang, T.: Aggregating complementary boundary contrast with smoothing for salient region detection. Vis. Comput. 2017, 1155–1167 (2017)
Li, X., Yang, F., Cheng, H., Liu, W., Shen, D.: Contour knowledge transfer for salient object detection. In: ECCV (2018)
Li, Y., Hou, X., Koch, C., Rehg, J.M., Yuille, A.L.: The secrets of salient object segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 280–287 (2014)
Liu, J.-J., Hou, Q., Cheng, M.-M., Feng, J., Jiang, J.: A simple pooling-based design for real-time salient object detection (2019)
Liu, N., Han, J., Yang, M.-H.: Picanet: Learning pixel-wise contextual attention for saliency detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3089–3098 (2018)
Liu, Z., Duan, Q., Shi, S., Zhao, P.: Multi-level progressive parallel attention guided salient object detection for rgb-d images. Vis. Comput. 2020, 1–12 (2020)
Liu, Z., Tang, J., Zhao, P.: Salient object detection via hybrid upsampling and hybrid loss computing. Vis. Comput. 2019D, 1–11 (2019)
Ye, L., Zhou, K., Xiyin, W., Gong, P.: A novel multi-graph framework for salient object detection. Vis. Comput. 35(11), 1683–1699 (2019)
Luo, Z., Mishra, A., Achkar, A., Eichel, J., Li, S., Jodoin, P.-M.: Non-local deep features for salient object detection. In: Proceedings of the IEEE Conference on computer vision and pattern recognition, pp. 6609–6617 (2017)
Mechrez, R., Shechtman, E., Zelnik-Manor, L.: Saliency driven image manipulation. (2016). CoRR, arXiv:1612.02184
Movahedi, V., Elder, J.H.: Design and perceptual validation of performance measures for salient object segmentation. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops, pp. 49–56. IEEE (2010)
Niu, D., Guo, H., Zhao, X., Zhang, C.: Three-dimensional salient point detection based on the laplace-beltrami eigenfunctions. Vis. Comput. 2019, 1–18 (2019)
Perazzi, F., Krähenbühl, P., Pritch, Y., Hornung, A.: Saliency filters: contrast based filtering for salient region detection. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 733–740. IEEE (2012)
Qin, X., He, S., Quintero, C.P., Singh, A., Dehghan, M., Jagersand, M.: Real-time salient closed boundary tracking via line segments perceptual grouping. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4284–4289. IEEE (2017)
Qin, X., He, S., Yang, X., Dehghan, M., Qin, Q., Jägersand, M.: Accurate outline extraction of individual building from very high-resolution optical images. IEEE Geosci. Remote Sens. Lett. 15(11), 1775–1779 (2018)
Qin, X., Zhang, Z., Huang, C., Gao, C., Dehghan, M., Jagersand, M.: Basnet: Boundary-aware salient object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7479–7489 (2019)
Shen, J., Yunfan, D., Wang, W., Li, X.: Lazy random walks for superpixel segmentation. IEEE Trans. Image Process. 23(4), 1451–1462 (2014)
Shen, J., Hao, X., Zhiyuan Liang, Y., Liu, W.W., Shao, L.: Real-time superpixel segmentation by dbscan clustering algorithm. IEEE Trans. Image Process. 25(12), 5933–5942 (2016)
Singh, V.K., Kumar, N.: Saliency bagging: a novel framework for robust salient object detection. Vis. Comput. 2019, 1–19 (2019)
Srivatsa, R.S., Babu, R.V.: Salient object detection via objectness measure. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 4481–4485, Sep. (2015)
Sun, J., Ling, H.: Scale and object aware image thumbnailing. Int. J. Comput. Vis. 104(2), 135–153 (2013)
Tang, Y., Tong, R., Tang, M., Zhang, Y.: Depth incorporating with color improves salient object detection. Vis. Comput. 2016, 111–121 (2016)
Wang, C., Zha, Z.-J., Liu, D., Xie, H.: Robust deep co-saliency detection with group semantic. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8917–8924 (2019)
Wang, L., Lu, H., Ruan, X., Yang, M.: Deep networks for saliency detection via local estimation and global search. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3183–3192, June (2015)
Wang, L., Lu, H., Wang, Y., Feng, M., Wang, D., Yin, B., Ruan, X.: Learning to detect salient objects with image-level supervision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 136–145 (2017)
Wang, L., Wang, L., Lu, H., Zhang, P., Ruan, X.: Saliency detection with recurrent fully convolutional networks. In: European Conference on Computer Vision, pp. 825–841. Springer (2016)
Wang, T., Borji, A., Zhang, L., Zhang, P., Lu, H.: A stagewise refinement model for detecting salient objects in images. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4019–4028 (2017)
Wang, W., Lai, Q., Fu, H., Shen, J., Ling, H.: Salient object detection in the deep learning era: an in-depth survey. (2019). arXiv preprint arXiv:1904.09146
Wang, W., Shen, J.: Deep visual attention prediction. IEEE Trans. Image Process. 27(5), 2368–2378 (2017)
Wang, W., Shen, J., Dong, X., Borji, A.: Salient object detection driven by fixation prediction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1711–1720 (2018)
Wang, W., Shen, J., Dong, X., Borji, A., Yang, R.: Inferring salient objects from human fixations. IEEE Trans. Pattern Anal. Mach. Intell. (2019)
Wang, W., Shen, J., Ling, H.: A deep network solution for attention and aesthetics aware photo cropping. IEEE Trans. Pattern Anal. Mach. Intell. 41(7), 1531–1544 (2018)
Wang, W., Shen, J., Shao, L.: Video salient object detection via fully convolutional networks. IEEE Trans. Image Process. 27(1), 38–49 (2017)
Wang, W., Shen, J., Yang, R., Porikli, F.: Saliency-aware video object segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 40(1), 20–33 (2017)
Wang, W., Shen, J., Yizhou, Y., Ma, K.-L.: Stereoscopic thumbnail creation via efficient stereo saliency detection. IEEE Trans. Vis. Comput. Graph. 23(8), 2014–2027 (2016)
Wang, W., Zhao, S., Shen, J., Hoi, S., Borji, A.: Salient object detection with pyramid attention and salient edges. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 04 (2019)
Wang, X., Ma, H., Chen, X.: Salient object detection via fast r-cnn and low-level cues. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 1042–1046, Sep. (2016)
Wu, R., Feng, M., Guan, W., Wang, D., Lu, H., Ding, E.: A mutual learning method for salient object detection with intertwined multi-supervision. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)
Wu, Z., Su, L., Huang, Q.: Stacked cross refinement network for edge-aware salient object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 7264–7273 (2019)
Yan, Q., Xu, L., Shi, J., Jia, J.: Hierarchical saliency detection. In: Proceedings of the IEEE Conference On Computer Vision And Pattern Recognition (CVPR), pp. 1155–1162 (2013)
Yang, C., Zhang, L., Lu, H., Ruan, X., Yang, M.-H.: Saliency detection via graph-based manifold ranking. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, June 23–28, 2013, pp. 3166–3173 (2013)
Zhang, F., Du, B., Zhang, L.: Saliency-guided unsupervised feature learning for scene classification. IEEE Trans. Geosci. Remote Sens. 53(4), 2175–2184 (2014)
Zhang, J., Dai, Y., Porikli, F., He, M.: Deep edge-aware saliency detection. (2017). CoRR, arXiv:1708.04366
Zhang, L., Dai, J., Lu, H., He, Y., Wang, G.: A bi-directional message passing model for salient object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1741–1750 (2018)
Zhang, P., Wang, D., Lu, H., Wang, H., Ruan, X.: Amulet: Aggregating multi-level convolutional features for salient object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 202–211 (2017)
Zhang, P., Wang, D., Lu, H., Wang, H., Yin, B.: Learning uncertain convolutional features for accurate saliency detection. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 212–221. IEEE (2017)
Zhao, J.-X., Cao, Y., Fan, D.-P., Cheng, M.-M., Li, X.-Y., Zhang, L.: Contrast prior and fluid pyramid integration for rgbd salient object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3927–3936 (2019)
Zhao, J.-X., Liu, J.-J., Fan, D.-P., Cao, Y., Yang, J., Cheng, M.-M.: Egnet: Edge guidance network for salient object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 8779–8788 (2019)
Zhao, J., Bo, R., Hou, Q., Cheng, M.-M., Rosin, P.: Flic: fast linear iterative clustering with active search. Comput. Vis. Med. 4(4), 333–348 (2018)
Zhao, R., Ouyang, W., Li, H., Wang, X.: Saliency detection by multi-context deep learning. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1265–1274, June (2015)
Zhu, W., Liang, S., Wei, Y., Sun, J.: Saliency optimization from robust background detection. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2814–2821, 09 (2014)
Acknowledgements
This work is supported by the National Natural Science Foundation of China (No. 51905529), Shaanxi Province Natural Science-Based Research Program (2019JQ-295), and the UCAS PhD scholarship. Thanks to teacher Adams at NTU for providing equipment and to Yew Lee Tan for proofreading and modifying this paper.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Wang, Y., Wang, H. & Cao, J. A contour self-compensated network for salient object detection. Vis Comput 37, 1467–1479 (2021). https://doi.org/10.1007/s00371-020-01882-w
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-020-01882-w