[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Efficient robust filtering technique for blocking artifacts reduction

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

This paper presents a new post-processing algorithm based on a robust statistical model to remove the blocking artifacts observed in block discrete cosine transform (BDCT)-based image compression standards. The novelty is the implementation of a new robust weight function for the block artifact reduction. The blocking artifacts in an image are treated as an outlier random variable. The robust formulation aims at eliminating the artifacts outliers, while preserving the edge structures in the restored image. Extensive simulation results and comparative studies demonstrate that the presented method provides superior results in terms of pixel-wise (PSNR) and perceptual (SSIM) measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Zhang, M., Gunturk, B.K.: Compression artifact reduction with adaptive bilateral filtering. Proc. IS&T/SPIE Electron. Imaging 7257, 1117–11289 (2009)

    Google Scholar 

  2. Jarske, T., Haavisto, P., Defee, I.: Post filtering methods for reducing blocking effects from coded images. IEEE Trans. Consum. Electron. 40, 521–526 (1994)

    Article  Google Scholar 

  3. Apostolopoulos, J.G., Jayant, S.: Postprocessing for very low bit-rate video compression. IEEE Trans. Image Process. 8, 1125–1129 (1999)

    Article  Google Scholar 

  4. Chen, T., Wu, H.R., Qiu, B.: Adaptive postfiltering of transform coefficients for the reduction of blocking artifacts. IEEE Trans. Circuits Syst. Video Technol. 11(5), 594–602 (2001)

    Article  Google Scholar 

  5. Liu, S., Bovik, A.C.: Efficient DCT-domain blind measurement and reduction of blocking artifacts. IEEE Trans. Circuits Syst. Video Technol. 12, 1139–1149 (2002)

    Article  Google Scholar 

  6. Liew, A.W.C., Hong, Y.: Blocking artifacts suppression in block-coded images using over complete waveletrepresentation. IEEE Trans. Circuits Syst. Video Technol. 14, 450–461 (2004)

    Article  Google Scholar 

  7. Malvar, H.S., Staelin, D.H.: The LOT: transform coding without blocking effects. IEEE Trans. Acoust. Speech Sign. Process. 37, 553–559 (1989)

    Article  Google Scholar 

  8. Malvar, H.S.: Biorthogonal and nonuniform lapped transforms for transform coding with reduced blockingand ringing artifacts. IEEE Trans. Sign. Process 46, 1043–1053 (1998)

    Article  Google Scholar 

  9. Gao, W.F., Kim, Y.M.: A de-blocking algorithm and a blockinessmetric for highly compressed images. IEEE Trans. Circuits Syst. Video Technol. 12, 1150–1159 (2002)

    Article  Google Scholar 

  10. Foi, A., Katkovnik, V., Egiazarian, K.: Pointwise shape-adaptive DCT for high quality denoising and deblocking of grayscale and color images. IEEE Trans. Image Process. 16, 1395–1411 (2007)

    Article  MathSciNet  Google Scholar 

  11. Jain, P., Tyagi, V.: An adaptive edge-preserving image denoising technique using tetrolet transforms. Vis. Comput. (2014). doi:10.1007/s00371-014-0993-7

    Google Scholar 

  12. Bini, A.A., Bhat, M.S.: A nonlinear level set model for image deblurring and denoising. Vis. Comput. 30(3), 311–325 (2013)

    Article  Google Scholar 

  13. Luo, Y., Ward, R.K.: Removing the blocking artifacts of block-based DCT compressed images. IEEE Trans. Image Process. 12, 838–842 (2003)

    Article  Google Scholar 

  14. Lieww, A.W.C., Hong, Y., Law, F.N.: POCS-based blocking artifacts suppression using a smoothness constraint set withexplicit region modeling. IEEE Trans. Circuits Syst. Video Technol. 15, 795–800 (2005)

  15. Zou, J.J., Yan, H.: A deblocking method for BDCT compressed images based on adaptive projections. IEEE Trans. Circuits Syst. Video Technol. 15, 430–435 (2005)

    Article  Google Scholar 

  16. Golestaneh, S.A., Damon, M., Chandle, D.M.: Algorithm for JPEG artifact reduction via local edge regeneration. J. Electron. Imaging 23(1), 013–018 (2014)

    Google Scholar 

  17. Strang, G., Nguye, T.: Wavelets and Filter Banks. Wellesley-Cambridge Press, Wellesley (1997)

    Google Scholar 

  18. Selesnick, I.W., Baraniuk, R.G., Kingsbury, N.G.: The dual-tree complex wavelet transform. IEEE Sign. Process. Mag. 22, 123–151 (2005)

    Article  Google Scholar 

  19. Kim, J.: Adaptive blocking artifact reduction using wavelet-based block analysis. IEEE Trans. Consum. Electron. 55, 933–940 (2009)

    Article  Google Scholar 

  20. Zhai, G., Zhang, W., Yang, X., Lin, W., Xu, Y.: Efficient image deblocking based on postfiltering in shifted windows. IEEE Trans. Circuits Syst. Video Technol. 8, 122–126 (2008)

    Article  Google Scholar 

  21. Zhai, G., Lin, W., Cai, J., Yang, X., Zhang, W.: Efficient quadtreebased block-shift filtering for deblocking and deranging. J. Vis. Commun. Image Represent. 20, 595–607 (2009)

    Article  Google Scholar 

  22. List, P., Joch, A., Lainema, J., Bjontegaar, G., Karczewicz, M.: Adaptive deblocking filter. IEEE Trans. Circuits Syst. Video Technol. 13(7), 614–619 (2003)

    Article  Google Scholar 

  23. Bross, B., Han, W.J., Ohm, J.R., Sullivan, G.J., Wang, Y.K., Wiegand, T.: High efficiency video coding (HEVC) text specification draft 10 (for FDIS & Consent). Geneva, Switzerland, document JCTVC-L1003 of JCT-VC (2013)

  24. Norkin, A., Bjontegaard, G., Fuldseth, A., Narroschke, M., Ikeda, M., Andersson, K., Zhou, M.: HEVC deblocking filter. IEEE Trans. Circuits. Syst. Video 22(12), 1746–1754 (2012)

    Article  Google Scholar 

  25. Pourreza, S.R., Yousefi, S., Kehtarnavaz, N.: A gradient-based optimization approach for reduction of blocking artifacts in JPEG images. Sign. Process. Image Commun. 29, 1079–1091 (2014)

    Article  Google Scholar 

  26. MPEG Video Group: MPEG-4 Video Verification. Model Version 18.0. ISO/IECJTC1/SC29/WG11 N3908 January (2001)

  27. Rabie, T.: Robust estimation approach for blind denoising. IEEE Trans. Image Process. 14, 1755–1765 (2005)

    Article  Google Scholar 

  28. Hampel, F., Ronchetti, E., Rousseeuw, P., Stahel, W.: Robust Statistics: The Approach Based on Influence Functions. Wiley, New York (1986)

    MATH  Google Scholar 

  29. Rousseeuw, P.J., Leroy, A.M.: Robust Regression and Outlier Detection. Wiley, New York (1987)

  30. Black, M.J., Marimont, D.H.: Robust anisotropic diffusion. IEEE Trans. Image Process. 7, 421–432 (1998)

    Article  Google Scholar 

  31. Singh, S., Kumar, V., Verma, K.: Reduction of blocking artifacts in JPEG compressed images. Digit. Sign. Process. 17, 225–243 (2007)

    Article  Google Scholar 

  32. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structure similarity. IEEE Trans. Image Process. 13, 600–612 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sema Koç Kayhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koç Kayhan, S. Efficient robust filtering technique for blocking artifacts reduction. Vis Comput 32, 417–427 (2016). https://doi.org/10.1007/s00371-015-1068-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-015-1068-0

Keywords

Navigation