Abstract
Circuit neuroscience tries to solve one of the most challenging questions in biology: How does the brain work? An important step toward an answer to this question is to gather detailed knowledge about the neuronal circuits of the model organism Drosophila melanogaster. Geometric representations of neuronal objects of the Drosophila are acquired using molecular genetic methods, confocal microscopy, nonrigid registration and segmentation. These objects are integrated into a constantly growing common atlas. The comparison of new segmented neuronal objects to already known neuronal structures is a frequent task, which evolves with a growing amount of data into a bottleneck of the knowledge discovery process. Thus, the exploration of the atlas by means of domain specific similarity measures becomes a pressing need. To enable similarity based retrieval of neuronal objects, we defined together with domain experts tailored dissimilarity measures for each of the three typical neuronal structures cell body, projection, and arborization. Moreover, we defined the neuron enhanced similarity for projections and arborizations. According to domain experts, the developed system has big advantages for all tasks, which involve extensive data exploration.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Blankenship, J.E., Houck, B.: Nervous system (invertebrate) (2012). http://accessscience.com/content/Nervous-system-(invertebrate)/449210
Bronstein, A., Bronstein, M., Guibas, L., Ovsjanikov, M.: Shape Google: geometric words and expressions for invariant shape retrieval. ACM Trans. Graph. 30(1) (2011)
Bruckner, S., Soltészová, V., Gröller, E., Hladuvka, J., Bühler, K., Yu, J.Y., Dickson, B.: BrainGazer-visual queries for neurobiology research. IEEE Trans. Vis. Comput. Graph. 15(6), 1497–1504 (2009)
Cardona, A., Saalfeld, S., Arganda, I., Pereanu, W., Schindelin, J., Hartenstein, V.: Identifying neuronal lineages of Drosophila by sequence analysis of axon tracts. J. Neurosci. 30(22), 7538–7553 (2010)
Demiralp, C., Laidlaw, D.: Similarity coloring of DTI fiber tracts. In: Proceedings of DMFC Workshop at MICCAI (2009)
Fehr, J., Streicher, A., Burkhardt, H.: A bag of features approach for 3D shape retrieval. In: Advances in Visual Computing, vol. 5875, pp. 34–43 (2009)
Grauman, K., Darrell, T.: The pyramid match kernel: discriminative classification with sets of image features. In: Proceedings of the IEEE International Conference on Computer Vision, October, pp. 1458–1465. IEEE Press, New York (2005)
Güntzer, U., Balke, W., Kiessing, W.: Optimizing multi-feature queries for image databases. In: Proceedings of the International Conference on Very Large Data Bases, pp. 419–428. Morgan Kaufmann, San Mateo (2000)
Ilyas, I.F., Beskales, G., Soliman, M.A.: A survey of top-k query processing techniques in relational database systems. ACM Comput. Surv. 40(4), 11 (2008)
Jiang, X., Bunke, H., Abegglen, K., Kandel, A.: Curve morphing by weighted mean of strings. In: Proceedings of the International Conference on Pattern Recognition, vol. 4, pp. 192–195. IEEE Press, New York (2002)
Lee, P., Ching, Y., Chang, H.: A semi-automatic method for neuron centerline extraction in confocal microscopic image stack. In: Proceedings of the IEEE International Symposium on Biomedical Imaging, pp. 959–962 (2008)
Li, X., Godil, A.: Exploring the bag-of-words method for 3D shape retrieval. In: Proceedings of the IEEE International Conference on Image Processing, pp. 437–440 (2009)
Lian, Z., Godil, A., Bustos, B., Daoudi, M., Hermans, J., Kawamura, S., Kurita, Y., Lavoué, G., Van Nguyen, H., Ohbuchi, R., Ohkita, Y., Ohishi, Y., Porikli, F., Reuter, F., Sipiran, I., Smeets, D., Suetens, P., Tabia, H., Vandermeulen, D.: A comparison of methods for non-rigid 3D shape retrieval. Pattern Recognit. 46, 449–461 (2012)
Lin, C.Y., Tsai, K.L., Wang, S.C., Hsieh, C.H., Chang, H.M., Chiang, A.S.: The neuron navigator: exploring the information pathway through the neural maze. In: Proceedings of the Pacific Visualization Symposium, pp. 35–42. IEEE Press, New York (2011)
Lu, G., Sajjanhar, A.: Region-based shape representation and similarity measure suitable for content-based image retrieval. Multimed. Syst. 7(2), 165–174 (1999)
Moberts, B., Vilanova, A., van Wijk, J.J.: Evaluation of fiber clustering methods for diffusion tensor imaging. In: Proceedings of the IEEE Visualization, pp. 65–72 (2005)
Mori, G., Belongie, S., Malik, J.: Efficient shape matching using shape contexts. In: Proceedings of the IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, pp. 1832–1837 (2005)
NCHC, BRC/NTHU: Fly Circuit (2012). http://www.flycircuit.tw/
Ohbuchi, R., Osada, K., Furuya, T., Banno, T.: Salient local visual features for shape-based 3D model retrieval. In: Proceedings of IEEE International Conference on Shape Modeling and Applications, pp. 93–102 (2008)
Olsen, S.R., Wilson, R.I.: Cracking neural circuits in a tiny brain: new approaches for understanding the neural circuitry of Drosophila. Trends Neurosci. 31(10), 512–520 (2008)
Peng, H.: Bioimage informatics: a new area of engineering biology. Bioinformatics 24(17), 1827–1836 (2008)
Peng, H., Chung, P., Long, F., Qu, L., Jenett, A., Seeds, A.M., Myers, E.W., Simpson, J.H.: BrainAligner: 3D registration atlases of Drosophila brains. Nat. Methods 8(6), 493–500 (2011)
Rohlfing, T., Maurer, C.R.: Nonrigid image registration in shared-memory multiprocessor environments with application to brains, breasts, and bees. IEEE Trans. Inf. Technol. Biomed. 7(1), 16–25 (2003)
Scorcioni, R., Polavaram, S., Ascoli, G.A.: L-Measure: a web-accessible tool for the analysis, comparison and search of digital reconstructions of neuronal morphologies. Nat. Protoc. 3(5), 866–876 (2008)
Sfikas, K., Theoharis, T., Pratikakis, I.: Non-rigid 3D object retrieval using topological information guided by conformal factors. Vis. Comput. 28, 943–955 (2012)
Sherbondy, A., Akers, D., Mackenzie, R., Dougherty, R., Wandell, B.: Exploring Connectivity of the Brain ’ s White Matter with Dynamic Queries. IEEE Trans. Vis. Comput. Graph. 11(4), 419–430 (2005)
Tangelder, J.W.H., Veltkamp, R.C.: A survey of content based 3D shape retrieval methods. Multimed. Tools Appl. 39(3), 441–471 (2007)
Van Essen, D.C.: Windows on the brain: the emerging role of atlases and databases in neuroscience. Curr. Opin. Neurobiol. 12(5), 574–579 (2002)
Wang, X., Liu, Y., Zha, H.: Intrinsic spin images: a subspace decomposition approach to understanding 3D deformable shapes. In: Proceedings of the Fifth International Symposium 3D Data Processing, Visualization and Transmission (2010)
Acknowledgements
This work was funded by the Austrian Research Promotion Agency (FFG) under the scope of the COMET—Competence Centers for Excellent Technologies—program within the project “Knowledge Assisted Visual Fusion of Spatial Multi-Source Data (KAFus).”
Author information
Authors and Affiliations
Corresponding author
Appendix: Retrieval results
Appendix: Retrieval results
Rights and permissions
About this article
Cite this article
Trapp, M., Schulze, F., Bühler, K. et al. 3D object retrieval in an atlas of neuronal structures. Vis Comput 29, 1363–1373 (2013). https://doi.org/10.1007/s00371-013-0871-8
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-013-0871-8