Abstract
Pedestrian models typically represent interactions between agents in a symmetric fashion. In general, these symmetric relationships are valid for a large number of crowd simulation scenarios. However, there are many cases in which symmetric responses between agents are inappropriate, leading to unrealistic behavior or undesirable simulation artifacts. We present a novel formulation, called right of way, which provides a well-disciplined mechanism for modeling asymmetric relationships between pedestrians. Right of way is a general principle, which can be applied to different types of pedestrian models. We illustrate this by applying right of way to three different pedestrian models (two based on social forces and one based on velocity obstacles) and show its impact in multiple scenarios. Particularly, we show how it enables simulation of the complex relationships exhibited by pilgrims performing the Islamic religious ritual, the Tawaf.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
“Best” in this case is defined by the optimization function. Typically, it is simply the velocity that has the minimum Euclidean distance to the preferred velocity.
If the agent were perfectly capable of maintaining its position, it would travel no distance at all.
References
Van den Berg, J., Guy, S.J., Lin, M., Manocha, D.: Reciprocal n-body collision avoidance. In: Inter. Symp. on Robotics Research (2009)
Blue, V.J., Adler, J.L.: Emergent fundamental pedestrian flows from cellular automata microsimulation. Transp. Res. Rec. 1644, 29–36 (1998)
Blue, V.J., Adler, J.L.: Cellular automata microsimulation of bidirectional pedestrian flows. Transp. Res. Rec. 1678, 135–141 (1999)
Burstedde, C., Klauck, K., Schadschneider, A., Zittartz, J.: Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Physica A 295, 507–525 (2001)
Chraibi, M., Seyfried, A., Schadschneider, A.: Generalized centrifugal-force model for pedestrian dynamics. Phys. Rev. E 82(4), 046,111 (2010)
Curtis, S., Guy, S.J., Zafar, B., Manocha, D.: Virtual Tawaf: a case study in simulating the behavior of dense, heterogeneous crowds. In: 1st IEEE Workshop on Modeling, Simulation and Visual Analysis of Large Crowds (2011)
Durupinar, F., Pelechano, N., Allbeck, J., Gudukbay, U., Badler, N.: The impact of the ocean personality model on the perception of crowds. IEEE Comput. Graph. Appl. 31(3), 22–31 (2011)
Fiorini, P., Shiller, Z.: Motion planning in dynamic environments using velocity obstacles. Int. J. Robot. Res. 17(7), 760–762 (1998)
Funge, J., Tu, X., Terzopoulos, D.: Cognitive modeling: knowledge, reasoning and planning for intelligent characters. In: SIGGRAPH, pp. 29–38. ACM, New York (1999)
Guy, S.J., Chhugani, J., Curtis, S., Lin, M.C., Dubey, P., Manocha, D.: Pledestrians: a least-effort approach to crowd simulation. In: Symposium on Computer Animation. ACM, New York (2010)
Guy, S.J., Kim, S., Lin, M.C., Manocha, D.: Simulating heterogeneous crowd behaviors using personality trait theory. In: SCA’11, pp. 43–52 (2011)
Guy, S.J., Lin, M.C., Manocha, D.: Modeling collision avoidance behavior for virtual humans. In: Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems, vol. 2, pp. 575–582 (2010)
Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic. Nature 407, 487–790 (2000)
Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. 51(5), 4282–4286 (1995)
Hirai, K., Tarui, K.: A simulation of the behavior of a crowd in panic. In: Proc. of the 1975 International Conference on Cybernetics and Society, pp. 409–411 (1975)
Johansson, A.D.H., Shukla, P.K.: Specification of the social force pedestrian model by evolutionary adjustment to video tracking data. Adv. Complex Syst. 10, 271–288 (2007)
Ju, E., Choi, M.G., Park, M., Lee, J., Lee, K.H., Takahashi, S.: Morphable crowds. ACM Trans. Graph. 29(6), 140 (2010)
Karamouzas, I., Heil, P., van Beek, P., Overmars, M.H.: A predictive collision avoidance model for pedestrian simulation. In: Motion in Games. Lecture Notes in Computer Science, vol. 5884, pp. 41–52. Springer, Berlin (2009)
Kretz, T., Grünebohm, A., Schreckenberg, M.: Experimental study of pedestrian flow through a bottleneck. J. Stat. Mech. Theory Exp. P10014 (2006)
Lee, K.H., Choi, M.G., Hong, Q., Lee, J.: Group behavior from video: a data-driven approach to crowd simulation. In: Symposium on Computer Animation, pp. 109–118 (2007)
Moussaïd, M., Perozo, N., Garnier, S., Helbing, D., Theraulaz, G.: The walking behaviour of pedestrian social groups and its impact on crowd dynamics. PLoS ONE 5(4), e10,047 (2010)
Müller, K.: Zur Gestaltung und Bemessung von Fluchtwegen für die Evakuierung von Personen aus Bauwerken auf der Grundlage von Modellversuchen. Ph.D. thesis, Technische Hochschule Otto von Guericke, Magdeburg (1981)
Nagai, R., Fukamachi, M., Nagatan, T.: Evacuation of crawlers and walkers from corridor through an exit. Physica A 367, 449–460 (2006)
Narain, R., Golas, A., Curtis, S., Lin, M.C.: Aggregate dynamics for dense crowd simulation. ACM Trans. Graph. 28, 122:1–122:8 (2009)
Ondřej, J., Pettré, J., Olivier, A.H., Donikian, S.: A synthetic-vision based steering approach for crowd simulation. In: Proc. SIGGRAPH, pp. 123:1–123:9 (2010)
Patil, S., van den Berg, J., Curtis, S., Lin, M., Manocha, D.: Directing crowd simulations using navigation fields. In: IEEE TVCG, pp. 244–254 (2010)
Pelechano, N., Allbeck, J., Badler, N.: Controlling individual agents in high-density crowd simulation. In: SCA07 (2007)
Pettré, J., Ondřej, J., Olivier, A.H., Cretual, A., Donikian, S.: Experiment-based modeling, simulation and validation of interactions between virtual walkers. In: SCA’09, pp. 189–198. ACM, New York (2009)
Pettré, J., Ondřej, J., Olivier, A.H., Cretual, A., Donikian, S.: Experiment-based modeling, simulation and validation of interactions between virtual walkers. In: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA’09), pp. 189–198 (2009)
Plaue, M., Chen, M., Bärwolff, G., Schwandt, H.: Trajectory extraction and density analysis of interesecting pedestrian flows from video recordings. In: Proceedings of the 2011 ISPRS Conference on Photogrammetric Image Analysis (2011)
Reynolds, C.: Flocks, herds and schools: a distributed behavioral model. In: SIGGRAPH (1987)
Schadschneider, A.: Cellular automaton approach to pedestrian dynamics—theory. In: Pedestrian and Evacuation Dynamics, pp. 77–86 (2001)
Seyfried, A., Passon, O., Steffen, B., Boltes, M., Rupprecht, T., Klingsch, W.: New insights into pedestrian flow through bottlenecks. Transp. Sci. 43, 395–406 (2009)
Seyfried, A., Schadschneider, A., Kemloh, U., Chraibi, M.: Force-based models of pedestrian dynamics. Netw. Heterog. Media 6(3), 425–442 (2011)
Treuille, A., Cooper, S., Popović, Z.: Continuum crowds. In: ACM SIGGRAPH 2006, pp. 1160–1168. ACM, New York (2006)
Ulicny, B., Thalmann, D.: Towards interactive real-time crowd behavior simulation. Comput. Graph. Forum 21(4), 767–775 (2002)
Yamamoto, K., Kokubo, S., Nishinari, K.: Simulation for pedestrian dynamics by real-coded cellular automata (RCA). Physica A 379, 654–660 (2007)
Yeh, H., Curtis, S., Patil, S., van den Berg, J., Manocha, D., Lin, M.: Composite agents. In: Proc. of SCA, pp. 39–47 (2008)
Yu, Q., Terzopoulos, D.: A decision network framework for the behavioral animation of virtual humans. In: Symposium on Computer Animation, pp. 119–128 (2007)
Yu, W.J., Chen, R., Dong, L.Y., Dai, S.Q.: Centrifugal force model for pedestrian dynamics. Phys. Rev. E 72, 026,112 (2005)
Zafar, B.: Analysis of the Mataf–Ramadan 1432 AH. Tech. rep, Hajj Research Institute, Umm al-Qura University, Saudi Arabia (2011)
Zanlungo, F., Ikeda, T., Kanda, T.: Social force model with explicit collision prediction. Europhys. Lett. 93, 68,005 (2011)
Zhang, J., Klingsch, W., Schadschneider, A., Seyfried, A.: Transitions in pedestrian fundamental diagrams of straight corridors and t-junctions. J. Stat. Mech. 2011(06), P06,004 (2011)
Zhang, J., Klingsch, W., Schadschneider, A., Seyfried, A.: Ordering in bidirectional pedestrian flows and its influence on the fundamental diagram. J. Stat. Mech. 2012(02), P02,002 (2012)
Acknowledgements
The authors would like to thank Francesco Zanlungo for discussions in extending his collision-prediction social-force pedestrian model and Atila Oǧuz Boyali for permitting the use of his photograph in Fig. 10.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Curtis, S., Zafar, B., Gutub, A. et al. Right of way. Vis Comput 29, 1277–1292 (2013). https://doi.org/10.1007/s00371-012-0769-x
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-012-0769-x