[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

An efficient diffusion model for viscous fingering

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Viscous fingering is one of the most important factors to produce realistic diffusion among two miscible fluids with differing viscosities. Diffusion-limited Aggregation (DLA) has been a popular choice for the synthesis of the viscous fingering effect. However, as DLA provides a mere description of aggregation process, it is not clear how to apply the DLA model into conventional 3D fluid simulation equations. The DLA model first generates a shape description of the viscous fingering effect. The shape description is changed to a fluid flow region by the application of dilation and erosion operators. The flow region is then filled with the directions which will guide the fluid motion in a simulation. The directions are converted into a form of external force by means of a linear feedback system. Our results show that the DLA model can generate the viscous fingering effect effectively in a single phase simulation without relying on a high resolution grid. Our method is semi-physical due to the employment of DLA and is easy to implement, as the underlying concept is simple. Computational overhead is also negligible from the conventional fluid simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Becker, M., Teschner, M.: Weakly compressible sph for free surface flows. In: SCA’07: Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 209–217 (2007)

    Google Scholar 

  2. Bogoyavlenskiy, V.A.: Mean-field diffusion-limited aggregation: A “density” model for viscous fingering phenomena. Phys. Rev. E 64, 066303 (2001)

    Article  Google Scholar 

  3. Chan, D.Y.C., Hughes, B.D., Paterson, L.: Fluctuations, viscous fingering, and diffusion-limited aggregation. Phys. Rev. A 34, 4079–4082 (1986)

    Article  Google Scholar 

  4. Fedkiw, R., Stam, J., Jensen, H.W.: Visual simulation of smoke. In: SIGGRAPH’01: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 15–22 (2001)

    Chapter  Google Scholar 

  5. Foster, N., Metaxas, D.: Realistic animation of liquids. Graph. Models Image Process. 58(5), 471–483 (1996)

    Article  Google Scholar 

  6. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Addison-Wesley, Reading (1993)

    Google Scholar 

  7. Gunzburger, M., Manservisi, S.: Analysis and approximation for linear feedback control for tracking the velocity in Navier–Stokes flows. Comput. Methods Appl. Mech. Eng. 189(3), 803–823 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hong, J.m., Kim, C.h.: Controlling fluid animation with geometric potential. Comput. Animat. Virtual Worlds 15(3–4), 147–157 (2004)

    Article  Google Scholar 

  9. Hong, J.M., Kim, C.H.: Discontinuous fluids. In: ACM SIGGRAPH 2005 Papers, SIGGRAPH’05, pp. 915–920. ACM, New York (2005)

    Chapter  Google Scholar 

  10. Hong, J.M., Lee, H.Y., Yoon, J.C., Kim, C.H.: Bubbles alive. ACM Trans. Graph. 27, 48:1–48:4 (2008)

    Article  Google Scholar 

  11. Kang, N., Park, J., Noh, J., Shin, S.Y.: A hybrid approach to multiple fluid simulation using volume fractions. Comput. Graph. Forum 29(2), 685–694 (2010)

    Article  Google Scholar 

  12. Kim, T., Lin, M.C.: Fast animation of lightning using an adaptive mesh. IEEE Trans. Vis. Comput. Graph. 13, 390–402 (2007)

    Article  Google Scholar 

  13. Kim, T., Henson, M., Lin, M.C.: A hybrid algorithm for modeling ice formation. In: Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA’04, pp. 305–314. Eurographics Association, Aire-la-Ville (2004)

    Chapter  Google Scholar 

  14. Kim, B., Liu, Y., Llamas, I., Rossignac, J., Flowfixer: Using bfecc for fluid simulation (2005)

  15. Kim, Y., Machiraju, R., Thompson, D.: Path-based control of smoke simulations. In: Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA’06, pp. 33–42. Eurographics Association, Aire-la-Ville (2006)

    Google Scholar 

  16. Kim, B., Liu, Y., Llamas, I., Rossignac, J.: Advections with significantly reduced dissipation and diffusion. IEEE Trans. Vis. Comput. Graph. 13(1), 135–144 (2007)

    Article  Google Scholar 

  17. Kim, D., Song, O.y., Ko, H.S.: A semi-lagrangian cip fluid solver without dimensional splitting. Comput. Graph. Forum 27(2), 467–475 (2008)

    Article  Google Scholar 

  18. Leonard, B.P.: A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Comput. Methods Appl. Mech. Eng. 19(1), 59–98 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  19. Losasso, F., Talton, J., Kwatra, N., Fedkiw, R.: Two-way coupled sph and particle level set fluid simulation. IEEE Trans. Vis. Comput. Graph. 14(4), 797–804 (2008)

    Article  Google Scholar 

  20. Monaghan, J.J.: An introduction to sph. Comput. Phys. Commun. 48(1), 89–96 (1988)

    Article  MATH  Google Scholar 

  21. Monaghan, J.J.: Simulating free surface flows with sph. J. Comput. Phys. 110, 399–406 (1994)

    Article  MATH  Google Scholar 

  22. Park, J., Kim, Y., Wi, D., Kang, N., Shin, S.Y., Noh, J.: A unified handling of immiscible and miscible fluids. Comput. Animat. Virtual Worlds 19, 455–467 (2008)

    Article  Google Scholar 

  23. Saffman, P.G., Taylor, G.: The penetration of a fluid into a porous medium or Hele–Shaw cell containing a more viscous liquid. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 245(1242), 312–329 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sethian, J.: Level Set Methods and Fast Marching Methods. 3. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  25. Shin, S.H., Kim, C.H.: Target-driven liquid animation with interfacial discontinuities. Comput. Animat. Virtual Worlds 18, 447–453 (2007)

    Article  Google Scholar 

  26. Shin, S.H., Kam, H.R., Kim, C.H.: Hybrid simulation of miscible mixing with viscous fingering. Comput. Graph. Forum 29(2), 675–683 (2010)

    Article  Google Scholar 

  27. Song, O.Y., Shin, H., Ko, H.S.: Stable but nondissipative water. ACM Trans. Graph. 24, 81–97 (2005)

    Article  Google Scholar 

  28. Stam, J.: Stable fluids. In: SIGGRAPH’99: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 121–128 (1999)

    Chapter  Google Scholar 

  29. Stam, J.: Real-time fluid dynamics for games (2003)

  30. Takahashi, T., Fujii, H., Kunimatsu, A., Hiwada, K., Saito, T., Tanaka, K., Ueki, H.: Realistic animation of fluid with splash and foam. Comput. Graph. Forum 22(3), 391–400 (2003)

    Article  Google Scholar 

  31. Tamas, V.: Fractal Growth Phenomena. World Scientific, Singapore (1992)

    MATH  Google Scholar 

  32. Treuille, A., McNamara, A., Popovi, Z., Stam, J.: Keyframe control of smoke simulations. In: SIGGRAPH’03: SIGGRAPH 2003 Papers, pp. 716–723 (2003)

    Chapter  Google Scholar 

  33. Witten, T.A., Sander, L.M.: Diffusion-limited aggregation, a kinetic critical phenomenon. Phys. Rev. Lett. 47, 1400–1403 (1981)

    Article  Google Scholar 

  34. Xu, S., Mei, X., Dong, W., Zhang, Z., Zhang, X.: Interactive visual simulation of dynamic ink diffusion effects. In: Proceedings of the 10th International Conference on Virtual Reality Continuum and Its Applications in Industry, VRCAI’11, pp. 109–116. ACM, New York (2011)

    Google Scholar 

  35. Yabe, T., Aoki, T.: A universal solver for hyperbolic equations by cubic-polynomial interpolation I. One-dimensional solver. Comput. Phys. Commun. 66, 219–232 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yabe, T., Ishikawa, T., Wang, P., Aoki, T., Kadota, Y., Ikeda, F.: A universal solver for hyperbolic equations by cubic-polynomial interpolation II. Two- and three-dimensional solvers. Comput. Phys. Commun. 66, 233–242 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We appreciate the anonymous reviewer’s valuable comments. We would also like to thank Jungjin Lee for many useful suggestions. This work was supported by KOCCA/MCST (2-10-7602-003-10743-01-007, Software Development for 2D to 3D Stereoscopic Image Conversion), MKE (10040959, Development of Compositing Software Supporting 4K Images), and NRF (2010-0003814, Basic Science Research Program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junyong Noh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cha, S., Park, J., Hwang, J. et al. An efficient diffusion model for viscous fingering. Vis Comput 28, 563–571 (2012). https://doi.org/10.1007/s00371-012-0690-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-012-0690-3

Keywords

Navigation