[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Physical simulation of wet clothing for virtual humans

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We present a technique that simulates wet garments for virtual humans with realistic folds and wrinkles. Our approach combines three new models to allow realistic simulation of wet garments: (1) a simplified saturation model that modifies the masses, (2) a nonlinear friction model derived from previously reported, real-world measurements, and (3) a wrinkle model based on imperfection sensitivity theory. In contrast to previous approaches to wet cloth, the proposed models are supported by the experimental results reported in the textile literature with parameters varying over the course of the simulation. As a result, the wet garment motions simulated by our method are comparable to that of real wet garments. Our approach recognizes the special, practical importance of contact models with human skin and provides a specific skin-cloth friction solution. We evaluate our approach by draping a rotating sphere and simulating a typical garment on a virtual human in the rain. Both of these examples are typical scenarios within computer graphics research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Ozgen, O., Kallmann, M., Ramirez, L., Coimbra, C.F.M.: Underwater cloth simulation with fractional derivatives. ACM Trans. Graph. 29, 1–9

  2. Huber, M., Pabst, S., Strasser, W.: Wet cloth simulation. In: ACM SIGGRAPH 2011 Posters, p. 10:1 (2011)

    Google Scholar 

  3. Lenaerts, T., Adams, B., Dutré, P.: Porous flow in particle-based fluid simulations. ACM Trans. Graph. 27, 49 (2008)

    Article  Google Scholar 

  4. van der Heijden, A.M.A.: W.T. Koiter’s Elastic Stability of Solids and Structures, 1st edn. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  5. Terzopoulos, D., Platt, J., Barr, A., Fleischer, K.: Elastically deformable models. In: SIGGRAPH’87, pp. 205–214 (1987)

    Google Scholar 

  6. Weil, J.: The synthesis of cloth objects. In: SIGGRAPH’86, pp. 49–54 (1986)

    Google Scholar 

  7. Provot, X.: Collision and self-collision handling in cloth model dedicated to design garments. In: Proceedings of Computer Animation and Simulation 97, pp. 177–189 (1997)

    Chapter  Google Scholar 

  8. Breen, D.E., House, D.H., Wozny, M.J.: Predicting the drape of woven cloth using interacting particles. In: Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’94, pp. 365–372 (1994)

    Chapter  Google Scholar 

  9. Baraff, D., Witkin, A.: Large steps in cloth simulation. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’98, pp. 43–54. ACM, New York (1998)

    Chapter  Google Scholar 

  10. Volino, P., Magnenat-Thalmann, N.: Resolving surface collisions through intersection contour minimization. ACM Trans. Graph. 25(3), 1154–1159 (2006)

    Article  Google Scholar 

  11. Robinson-Mosher, A., Shinar, T., Gretarsson, J., Su, J., Fedkiw, R.: Two-way coupling of fluids to rigid and deformable solids and shells. ACM Trans. Graph. 27, 1–9 (2008)

    Article  Google Scholar 

  12. Huang, C., Sun, H., Liu, S., Li, P.: Interactive soft-fabrics watering simulation on GPU. Comput. Animat. Virtual Worlds 22(2–3), 99106 (2011)

    Google Scholar 

  13. Bridson, R., Fedkiw, R., Anderson, J.: Robust treatment of collisions, contact and friction for cloth animation. In: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’02, pp. 594–603 (2002)

    Chapter  Google Scholar 

  14. Bridson, R., Marino, S., Fedkiw, R.: Simulation of clothing with folds and wrinkles. In: ACM SIGGRAPH 2005 Courses, SIGGRAPH’05, p. 3 (2005)

    Chapter  Google Scholar 

  15. Pabst, S., Thomaszewski, B., Strasser, W.: Anisotropic friction for deformable surfaces and solids. In: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA’09, pp. 149–154 (2009)

    Chapter  Google Scholar 

  16. Provot, X.: Deformation Constraints in a Mass-Spring Model to Describe Rigid Cloth Behavior (1995)

  17. Bonanni, U., Luible, C., Magnenat-Thalmann, N., Mkinen, M., Volino, P., Davy, P., Meinander, H.: From measured physical parameters to the haptic feeling of fabric. Vis. Comput. 23(2), 133–142 (2007)

    Article  Google Scholar 

  18. Charfi, H., Gagalowicz, A., Brun, R.: Viscosity damping parameters of fabric related to a non-linear textile model. Tex. Res. J. 76, 787–798 (2006)

    Article  Google Scholar 

  19. Choi, K.-J., Ko, H.-S.: Stable but responsive cloth. In: SIGGRAPH’02, p. 1 (2002)

    Google Scholar 

  20. Decaudin, P., Julius, D., Wither, J., Boissieux, L., Sheffer, A., Cani, M.-P.: Virtual garments: a fully geometric approach for clothing design. Comput. Graph. Forum (Proc. Eurographics’06) 25(3), 625–634 (2006)

    Article  Google Scholar 

  21. Taibi, E.H., Hammouche, A., Kifani, A.: Model of the tensile stress-strain behavior of fabrics. Tex. Res. J. 71(7), 582–586 (2001)

    Article  Google Scholar 

  22. Müller, M., Solenthaler, B., Keiser, R., Gross, M.: Particle-based fluid-fluid interaction. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA’05, pp. 237–244 (2005)

    Chapter  Google Scholar 

  23. Kothari, V., Das, B., Das, A.: Moisture flow through blended fabrics effect of hydrophilicity. J. Eng. Fibers Fabr. 4, 19–28 (2009)

    Google Scholar 

  24. Li, Y., Plante, A.M., Holcombe, B.V.: Fiber hygroscopicity and perceptions of dampness part II: physical mechanisms. Tex. Res. J. 65, 316–324 (1995)

    Article  Google Scholar 

  25. Luo, W.-d., Cui, W.-g., Xiang, X-Z.: The study on the hydroscopicity of fa. J. Wuhan Univ. Sci. Eng. 17(1), 5–9 (2004)

    Google Scholar 

  26. Kenins, P.: Influence of fiber-type and moisture on measured fabric-to-skin friction. Tex. Res. J. 64(12), 722–728 (1994)

    Article  Google Scholar 

  27. Kawabata, S.: The Standardization and Analysis of Hand Evaluation. Textile Machinery Society of Japan (1980)

    Google Scholar 

  28. Abdelmoula, R., Leger, A.: Singular perturbation analysis of the buckling of circular cylindrical shells. Eur. J. Mech. 1, 1–36 (2007)

    Google Scholar 

  29. Goldenthal, R., Harmon, D., Fattal, R., Bercovier, M., Grinspun, E.: Efficient simulation of inextensible cloth. In: ACM SIGGRAPH 2007 Papers, SIGGRAPH’07, p. 49 (2007)

    Chapter  Google Scholar 

Download references

Acknowledgements

We would like to thank Robert Ronan Teoxon RAFON for providing the 3D geometry model of the garment and the body, Dr. Flavien JACKIE PICON, and Mohamed ELGENDI for the useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yujun Chen.

Additional information

National Science Foundation of China (Grant No. 61003106).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Magnenat Thalmann, N. & Foster Allen, B. Physical simulation of wet clothing for virtual humans. Vis Comput 28, 765–774 (2012). https://doi.org/10.1007/s00371-012-0687-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-012-0687-y

Keywords

Navigation