[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Time-of-flight sensor and color camera calibration for multi-view acquisition

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

This paper presents a multi-view acquisition system using multi-modal sensors, composed of time-of-flight (ToF) range sensors and color cameras. Our system captures the multiple pairs of color images and depth maps at multiple viewing directions. In order to ensure the acceptable accuracy of measurements, we compensate errors in sensor measurement and calibrate multi-modal devices. Upon manifold experiments and extensive analysis, we identify the major sources of systematic error in sensor measurement and construct an error model for compensation. As a result, we provide a practical solution for the real-time error compensation of depth measurement. Moreover, we implement the calibration scheme for multi-modal devices, unifying the spatial coordinate for multi-modal sensors.

The main contribution of this work is to present the thorough analysis of systematic error in sensor measurement and therefore provide a reliable methodology for robust error compensation. The proposed system offers a real-time multi-modal sensor calibration method and thereby is applicable for the 3D reconstruction of dynamic scenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Levoy, M., Hanrahan, P.: Light field rendering. In: Proc. ACM SIGGRAPH, pp. 31–42 (1996)

    Google Scholar 

  2. Scharstein, D.: Stereo vision for view synthesis. In: Proc. Computer Vision and Pattern Recognition, pp. 852–858 (1996)

    Google Scholar 

  3. Woodham, D.R.J.: Photometric method for determining surface orientation from multiple images. Opt. Eng. 19(1), 139–144 (1980)

    Google Scholar 

  4. Zhang, R., Tsai, P.-S., Cryer, J.E., Shah, M.: Shape from shading: a survey. In: IEEE Trans. on Pattern Analysis and Machine Intelligence, pp. 690–706 (1999)

    Google Scholar 

  5. Levoy, M., Pulli, K., Curless, B., Rusinkiewicz, S., Koller, D., Pereira, L., Ginzton, M., Anderson, S., Davis, J., Ginsberg, J., Shade, J., Fulk, D.: The digital Michelangelo project. In: Proc. ACM SIGGRAPH, pp. 131–144 (2000)

    Google Scholar 

  6. Batlle, J., Mouaddib, E.M., Salvi, J.: Recent progress in coded structured light as a technique to solve the correspondence problem: a survey. Pattern Recogn. 1–63 (1998). doi:10.1109/ROBOT.1197.620027

  7. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 1330–1334 (2000). doi:10.1109/34.888718

  8. Kahlmann, T., Ingesand, H.: Calibration and improvements of the high-resolution range-imaging camera SwissRanger TM. In: Conference on Videometrics VIII, Part of the IS&T/SPIE Symposium on Electronic Imaging (2005)

    Google Scholar 

  9. Kahlmann, T., Ingensand, H.: High-precision investigations of the fast range imaging sensor swissranger. In: Optics East (2007)

    Google Scholar 

  10. Fuchs, S., May, S.: Calibration and registration for precise surface reconstruction. In: Proceedings of the DAGM Dyn3D Workshop (2007)

    Google Scholar 

  11. Fuchs, S., Hirzinger, G.: Extrinsic and depth calibration of ToF-cameras. In: Proc. Computer Vision and Pattern Recognition, pp. 1–6 (2008)

    Google Scholar 

  12. Kim, Y.M., Chan, D., Theobalt, C., Thrun, S.: Design and calibration of a multi-view ToF sensor fusion system. In: Proc. Computer Vision and Pattern Recognition (2008)

    Google Scholar 

  13. Guan, L., Pollefeys, M.: A unified approach to calibrate a network of camcorders and ToF cameras. In: Proc. European Conference on Computer Vision (2008)

    Google Scholar 

  14. Guan, L., Franco, J.-S., Pollefeys, M.: 3D object reconstruction with heterogeneous sensor data. In: 3DPVT (2008)

    Google Scholar 

  15. Bouguet, Y.J.: Camera calibration toolbox for Matlab. http://www.vision.caltech.edu/bouguetj/calib_doc/

  16. Gut, O.: Untersuchungen des 3D-sensors swissranger, Diploma thesis

  17. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  18. Fryer, J.G., Brown, D.C.: Lens distortion for close-range photogrammetry. Photogramm. Eng. Remote Sens. 52, 51–58 (1986)

    Google Scholar 

  19. Payne, A., Dorrington, A., Cree, M.: Optimization of 3D range-imaging sensors. SPIE Newsroom (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyunjung Shim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shim, H., Adelsberger, R., Kim, J.D. et al. Time-of-flight sensor and color camera calibration for multi-view acquisition. Vis Comput 28, 1139–1151 (2012). https://doi.org/10.1007/s00371-011-0664-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-011-0664-x

Keywords

Navigation