Abstract
We introduce a skeletal graph for topological 3D shape representation using Morse theory. The proposed skeletonization algorithm encodes a 3D shape into a topological Reeb graph using a normalized mixture distance function. We also propose a novel graph matching algorithm by comparing the relative shortest paths between the skeleton endpoints. Experimental results demonstrate the feasibility of the proposed topological Reeb graph as a shape signature for 3D object matching and retrieval.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Fomenko, A.T., Kunii, T.L.: Topological Modeling for Visualization. Springer, Tokyo (1997)
Grigorishin, T., Abdel-Hamid, G., Yang, Y.H.: Skeletonization: an electrostatic field-based approach. Pattern Anal. Appl. 163–177, (1998)
Shinagawa, Y., Kunii, T.L., Kergosien, Y.L.: Surface coding based on Morse theory. IEEE Comput. Graph. Appl. 11(5), 66–78 (1991)
Lazarus, F., Verroust, A.: Level set diagrams of polyhedral objects. In: Proc. ACM Symp. Solid Modeling and Applications, pp. 130–140 (1999)
Siddiqi, K., Shokoufandeh, A., Dickinson, S.J., Zucker, S.W.: Shock graphs and shape matching. Int. J. Comput. Vis. 35(1), 13–32 (1999)
Hilaga, M., Shinagawa, Y., Komura, T., Kunii, T.L.: Topology matching for fully automatic similarity estimation of 3D shapes. In: Proc. SIGGRAPH, pp. 203–212 (2001)
Siddiqi, K., Zhang, J., Macrini, D., Shokoufandeh, A., Bouix, S., Dickinson, S.: Retrieving articulated 3-D models using medial surfaces. Mach. Vis. Appl., 19(4), 261–275 (2008)
Damon, J.: Tree structure for contractible regions in ℝ3. Int. J. Comput. Vis. 74(2), 103–116 (2007)
Siddiqi, K., Pizer, S.: Medial Representations: Mathematics, Algorithms and Applications. Springer, Heidelberg (2008)
Cornea, N.D., Demirci, M.F., Silver, D., Shokoufandeh, A., Dickinson, S., Kantor, P.B.: 3D object retrieval using many-to-many matching of curve skeletons. In: Proc. Int. Conf. Shape Modeling and Applications, pp. 368–373 (2005)
Hassouna, M.S., Farag, A.A.: Variational curve skeletons using gradient vector flow. IEEE Trans. Pattern Anal. Mach. Intell. 31(12), 2257–2274 (2009)
Tagliasacchi, A., Zhang, H., Cohen-Or, D.: Curve skeleton extraction from incomplete point cloud. ACM Trans. Graph. 28(3), (2009)
Ankerst, M., Kastenmüller, G., Kriegel, H., Seidl, T.: 3D shape histograms for similarity search and classification in spatial databases. In: Proc. Int. Symp. Advances in Spatial Databases, pp. 207–226 (1999)
Osada, R., Funkhouser, T., Chazelle, B., Dobkin, D.: Shape distributions. ACM Trans. Graph. 21(4), 807–832 (2002)
Kazhdan, M., Funkhouser, T., Rusinkiewicz, S.: Rotation invariant spherical harmonic representation of 3D shape descriptors. In: Proc. ACM Symp. Geometry Processing, pp. 156–164 (2003)
Chen, D.-Y., Tian, X.-P., Shen, Y.-T., Ouhyoung, M.: On visual similarity based 3D model retrieval. Comput. Graph. Forum 22(3), 223–232 (2003)
Shilane, P., Min, P., Kazhdan, M., Funkhouser, T.: The Princeton shape benchmark. In: Proc. Shape Modeling International, pp. 167–178 (2004)
Ni, X., Garland, M., Hart, J.C.: Fair Morse functions for extracting the topological structure of a surface mesh. In: Proc. Int. Conf. Computer Graphics and Interactive Techniques, pp. 613–622 (2004)
Tierny, J., Vandeborre, J.-P., Daoudi, M.: Partial 3D shape retrieval by Reeb pattern unfolding. Comput. Graph. Forum 28(1), 41–55 (2008)
Gebal, K., Baerentzen, A., Aans, H., Larsen, R.: Shape analysis using the auto diffusion function. Comput. Graph. Forum 28(5), 1405–1413 (2009)
Aouada, D., Krim, H.: Squigraphs for fine and compact modeling of 3-D shapes. IEEE Trans. Image Process. 19(2), 306–321 (2010)
Biasotti, S., Giorgi, D., Spagnuolo, M., Falcidieno, B.: Reeb graphs for shape analysis and applications. Theor. Comput. Sci. 392(1–3), 5–22 (2007)
Pascucci, V., Scorzelli, G., Bremer, P.T., Mascarenhas, A.: Robust on-line computation of Reeb graphs: simplicity and speed. ACM Trans. Graph. 26(3) (2007)
Patane, G., Spagnuolo, M., Falcidieno, B.: A minimal contouring approach to the computation of the Reeb Graph. IEEE Trans. Vis. Comput. Graph. 15(4), 583–595 (2009)
Reuter, M.: Hierarchical shape segmentation and registration via topological features of Laplace–Beltrami eigenfunctions. Int. J. Comput. Vis. 89(2), 287–308 (2010)
Mohamed, W., Ben Hamza, A.: Skeleton graph matching and retrieval of 3D objects. In: Computer Graphics International, Ottawa (2011)
Milnor, J.: Morse Theory. Princeton University Press, Princeton (1963)
Edelsbrunner, H., Harer, J., Zomorodian, A.: Hierarchical Morse complexes for piecewise linear 2-manifolds. In: Proc. Symp. Computational Geometry, pp. 70–79 (2001)
Guillemin, V., Pollack, A.: Differential Topology. Prentice-Hall, Englewood Cliffs (1974)
do Carmo, M.: Differential Geometry of Curves and Surfaces. Prentice-Hall, Upper Saddle River (1976)
Nielson, G.M., Foley, T.A.: A survey of applications of an affine invariant norm. In: Mathematical Methods in Computer Aided Geometric Design, pp. 445–467. Academic Press, Boston (1989)
Bai, X., Latecki, L.J.: Path similarity skeleton graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 30(7), 1282–1292 (2008)
Demirci, M.F., Shokoufandeh, A., Keselman, Y., Bretzner, L., Dickinson, S.: Object recognition as many-to-many feature matching. Int. J. Comput. Vis. 69(2), 203–222 (2006)
Ling, H., Jacobs, D.W.: Shape classification using inner-distance. IEEE Trans. Pattern Anal. Mach. Intell. 29(2), 286–299 (2007)
Bai, X., Latecki, L.J., Liu, W.-Y.: Skeleton pruning by contour partitioning with discrete curve evolution. IEEE Trans. Pattern Anal. Mach. Intell. 29(3), 449–462 (2007)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Mohamed, W., Ben Hamza, A. Reeb graph path dissimilarity for 3D object matching and retrieval. Vis Comput 28, 305–318 (2012). https://doi.org/10.1007/s00371-011-0640-5
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-011-0640-5