[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Reeb graph path dissimilarity for 3D object matching and retrieval

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We introduce a skeletal graph for topological 3D shape representation using Morse theory. The proposed skeletonization algorithm encodes a 3D shape into a topological Reeb graph using a normalized mixture distance function. We also propose a novel graph matching algorithm by comparing the relative shortest paths between the skeleton endpoints. Experimental results demonstrate the feasibility of the proposed topological Reeb graph as a shape signature for 3D object matching and retrieval.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Fomenko, A.T., Kunii, T.L.: Topological Modeling for Visualization. Springer, Tokyo (1997)

    MATH  Google Scholar 

  2. Grigorishin, T., Abdel-Hamid, G., Yang, Y.H.: Skeletonization: an electrostatic field-based approach. Pattern Anal. Appl. 163–177, (1998)

  3. Shinagawa, Y., Kunii, T.L., Kergosien, Y.L.: Surface coding based on Morse theory. IEEE Comput. Graph. Appl. 11(5), 66–78 (1991)

    Article  Google Scholar 

  4. Lazarus, F., Verroust, A.: Level set diagrams of polyhedral objects. In: Proc. ACM Symp. Solid Modeling and Applications, pp. 130–140 (1999)

    Chapter  Google Scholar 

  5. Siddiqi, K., Shokoufandeh, A., Dickinson, S.J., Zucker, S.W.: Shock graphs and shape matching. Int. J. Comput. Vis. 35(1), 13–32 (1999)

    Article  Google Scholar 

  6. Hilaga, M., Shinagawa, Y., Komura, T., Kunii, T.L.: Topology matching for fully automatic similarity estimation of 3D shapes. In: Proc. SIGGRAPH, pp. 203–212 (2001)

    Google Scholar 

  7. Siddiqi, K., Zhang, J., Macrini, D., Shokoufandeh, A., Bouix, S., Dickinson, S.: Retrieving articulated 3-D models using medial surfaces. Mach. Vis. Appl., 19(4), 261–275 (2008)

    Article  Google Scholar 

  8. Damon, J.: Tree structure for contractible regions in ℝ3. Int. J. Comput. Vis. 74(2), 103–116 (2007)

    Article  Google Scholar 

  9. Siddiqi, K., Pizer, S.: Medial Representations: Mathematics, Algorithms and Applications. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  10. Cornea, N.D., Demirci, M.F., Silver, D., Shokoufandeh, A., Dickinson, S., Kantor, P.B.: 3D object retrieval using many-to-many matching of curve skeletons. In: Proc. Int. Conf. Shape Modeling and Applications, pp. 368–373 (2005)

    Google Scholar 

  11. Hassouna, M.S., Farag, A.A.: Variational curve skeletons using gradient vector flow. IEEE Trans. Pattern Anal. Mach. Intell. 31(12), 2257–2274 (2009)

    Article  Google Scholar 

  12. Tagliasacchi, A., Zhang, H., Cohen-Or, D.: Curve skeleton extraction from incomplete point cloud. ACM Trans. Graph. 28(3), (2009)

  13. Ankerst, M., Kastenmüller, G., Kriegel, H., Seidl, T.: 3D shape histograms for similarity search and classification in spatial databases. In: Proc. Int. Symp. Advances in Spatial Databases, pp. 207–226 (1999)

    Chapter  Google Scholar 

  14. Osada, R., Funkhouser, T., Chazelle, B., Dobkin, D.: Shape distributions. ACM Trans. Graph. 21(4), 807–832 (2002)

    Article  Google Scholar 

  15. Kazhdan, M., Funkhouser, T., Rusinkiewicz, S.: Rotation invariant spherical harmonic representation of 3D shape descriptors. In: Proc. ACM Symp. Geometry Processing, pp. 156–164 (2003)

    Google Scholar 

  16. Chen, D.-Y., Tian, X.-P., Shen, Y.-T., Ouhyoung, M.: On visual similarity based 3D model retrieval. Comput. Graph. Forum 22(3), 223–232 (2003)

    Article  Google Scholar 

  17. Shilane, P., Min, P., Kazhdan, M., Funkhouser, T.: The Princeton shape benchmark. In: Proc. Shape Modeling International, pp. 167–178 (2004)

    Chapter  Google Scholar 

  18. Ni, X., Garland, M., Hart, J.C.: Fair Morse functions for extracting the topological structure of a surface mesh. In: Proc. Int. Conf. Computer Graphics and Interactive Techniques, pp. 613–622 (2004)

    Google Scholar 

  19. Tierny, J., Vandeborre, J.-P., Daoudi, M.: Partial 3D shape retrieval by Reeb pattern unfolding. Comput. Graph. Forum 28(1), 41–55 (2008)

    Article  Google Scholar 

  20. Gebal, K., Baerentzen, A., Aans, H., Larsen, R.: Shape analysis using the auto diffusion function. Comput. Graph. Forum 28(5), 1405–1413 (2009)

    Article  Google Scholar 

  21. Aouada, D., Krim, H.: Squigraphs for fine and compact modeling of 3-D shapes. IEEE Trans. Image Process. 19(2), 306–321 (2010)

    Article  MathSciNet  Google Scholar 

  22. Biasotti, S., Giorgi, D., Spagnuolo, M., Falcidieno, B.: Reeb graphs for shape analysis and applications. Theor. Comput. Sci. 392(1–3), 5–22 (2007)

    MathSciNet  Google Scholar 

  23. Pascucci, V., Scorzelli, G., Bremer, P.T., Mascarenhas, A.: Robust on-line computation of Reeb graphs: simplicity and speed. ACM Trans. Graph. 26(3) (2007)

  24. Patane, G., Spagnuolo, M., Falcidieno, B.: A minimal contouring approach to the computation of the Reeb Graph. IEEE Trans. Vis. Comput. Graph. 15(4), 583–595 (2009)

    Article  Google Scholar 

  25. Reuter, M.: Hierarchical shape segmentation and registration via topological features of Laplace–Beltrami eigenfunctions. Int. J. Comput. Vis. 89(2), 287–308 (2010)

    Article  Google Scholar 

  26. Mohamed, W., Ben Hamza, A.: Skeleton graph matching and retrieval of 3D objects. In: Computer Graphics International, Ottawa (2011)

    Google Scholar 

  27. Milnor, J.: Morse Theory. Princeton University Press, Princeton (1963)

    MATH  Google Scholar 

  28. Edelsbrunner, H., Harer, J., Zomorodian, A.: Hierarchical Morse complexes for piecewise linear 2-manifolds. In: Proc. Symp. Computational Geometry, pp. 70–79 (2001)

    Google Scholar 

  29. Guillemin, V., Pollack, A.: Differential Topology. Prentice-Hall, Englewood Cliffs (1974)

    MATH  Google Scholar 

  30. do Carmo, M.: Differential Geometry of Curves and Surfaces. Prentice-Hall, Upper Saddle River (1976)

    MATH  Google Scholar 

  31. Nielson, G.M., Foley, T.A.: A survey of applications of an affine invariant norm. In: Mathematical Methods in Computer Aided Geometric Design, pp. 445–467. Academic Press, Boston (1989)

    Google Scholar 

  32. Bai, X., Latecki, L.J.: Path similarity skeleton graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 30(7), 1282–1292 (2008)

    Article  Google Scholar 

  33. Demirci, M.F., Shokoufandeh, A., Keselman, Y., Bretzner, L., Dickinson, S.: Object recognition as many-to-many feature matching. Int. J. Comput. Vis. 69(2), 203–222 (2006)

    Article  Google Scholar 

  34. Ling, H., Jacobs, D.W.: Shape classification using inner-distance. IEEE Trans. Pattern Anal. Mach. Intell. 29(2), 286–299 (2007)

    Article  Google Scholar 

  35. Bai, X., Latecki, L.J., Liu, W.-Y.: Skeleton pruning by contour partitioning with discrete curve evolution. IEEE Trans. Pattern Anal. Mach. Intell. 29(3), 449–462 (2007)

    Article  Google Scholar 

  36. http://www.cim.McGill.ca/shape/benchmark

  37. http://shape.cs.princeton.edu/benchmark

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ben Hamza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohamed, W., Ben Hamza, A. Reeb graph path dissimilarity for 3D object matching and retrieval. Vis Comput 28, 305–318 (2012). https://doi.org/10.1007/s00371-011-0640-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-011-0640-5

Keywords

Navigation