Abstract
A new mesh optimization framework for 3D triangular surface meshes is presented, which formulates the task as an energy minimization problem in the same spirit as in Hoppe et al. (SIGGRAPH’93: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, 1993). The desired mesh properties are controlled through a global energy function including data attached terms measuring the fidelity to the original mesh, shape potentials favoring high quality triangles, and connectivity as well as budget terms controlling the sampling density. The optimization algorithm modifies mesh connectivity as well as the vertex positions. Solutions for the vertex repositioning step are obtained by a discrete graph cut algorithm examining global combinations of local candidates.
Results on various 3D meshes compare favorably to recent state-of-the-art algorithms. Applications consist in optimizing triangular meshes and in simplifying meshes, while maintaining high mesh quality. Targeted areas are the improvement of the accuracy of numerical simulations, the convergence of numerical schemes, improvements of mesh rendering (normal field smoothness) or improvements of the geometric prediction in mesh compression techniques.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Mesh optimization. In: SIGGRAPH’93: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques (1993)
Shewchuk, J.R.: What is a good linear element? Interpolation, conditioning, and quality measures. In: 11th International Meshing Roundtable, pp. 115–126 (2002)
Alliez, P., Ucelli, G., Gotsman, C., Attene, M.: Recent Advances in Remeshing of Surfaces. Springer, Berlin (2008)
Cohen-Steiner, D., Alliez, P., Desbrun, M.: Variational shape approximation. In: ACM Siggraph, pp. 905–914 (2004)
Valette, S., Chassery, J.-M.: Approximated centroidal Voronoi diagrams for uniform polygonal mesh coarsening. Comput. Graph. Forum 23(3), 381–389 (2004) (Eurographics 2004 Proceedings)
Valette, S., Chassery, J.-M., Prost, R.: Generic remeshing of 3d triangular meshes with metric-dependent discrete Voronoi diagrams. IEEE Trans. Vis. Comput. Graph. 14(2), 369–381 (2008)
Alliez, P., Colin de Verdière, E., Devillers, O., Isenburg, M.: Isotropic surface remeshing. In: IEEE Shape Modeling International, pp. 49–58 (2003)
Guskov, I., Khodakovsky, A., Schröder, P., Sweldens, W.: Hybrid meshes: multiresolution using regular and irregular refinement. In: ACM SIGGRAPH Symposium on Computational Geometry, pp. 264–272 (2002)
Sifri, O., Sheffer, A., Gotsman, C.: Geodesic-based surface remeshing. In: 12th International Meshing Roundtable, pp. 189–199 (2003)
Peyré, G., Cohen, L.: Geodesic remeshing using front propagation. Int. J. Comput. Vis. 69(1), 145–156 (2006)
Surazhsky, V., Gotsman, C.: Explicit surface remeshing. In: Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pp. 20–30 (2003)
Surazhsky, V., Alliez, P., Gotsman, C.: Isotropic remeshing of surfaces: a local parameterization approach. In: 12th International Meshing Roundtable, pp. 215–224 (2003)
Winkler, T., Hormann, K., Gotsman, C.: Mesh massage: a versatile mesh optimization framework. Vis. Comput. 24(7), 775–785 (2008)
Liu, L., Tai, C.-L., Ji, Z., Wang, G.: Non-iterative approach for global mesh optimization. Comput. Aided Des. 39(9), 772–782 (2007)
Nealen, A., Igarashi, T., Sorkine, O., Alexa, M.: Laplacian mesh optimization. In: ACM Graphite, pp. 381–389 (2006)
Cohen-Steiner, D., Morvan, J.: Restricted Delaunay triangulations and normal cycle. In: ACM SIGGRAPH Symposium on Computational Geometry, pp. 312–321 (2003)
Jiao, X., Heath, M.T.: Feature detection for surface meshes. In: Proceedings of 8th International Conference on Numerical Grid Generation in Computational Field Simulations, pp. 705–714 (2002)
Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6(6), 721–741 (1984)
Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 147–159 (2004)
Pottmann, H., Hofer, M.: Geometry of the squared distance function to curves and surfaces. In: Hege, H.-C., Polthier, K. (eds.) Visualization and Mathematics III, pp. 223–244. Springer, Berlin (2003)
Wang, W., Pottmann, H., Liu, Y.: Fitting B-spline curves to point clouds by curvature-based squared distance minimization. ACM Trans. Graph. 25(2), 214–238 (2006)
Lempitsky, V., Roth, S., Carsten, R.: Fusionflow: discrete-continuous optimization for optical flow estimation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)
Kolmogorov, V., Rother, C.: Minimizing nonsubmodular functions with graph cuts—a review. IEEE Trans. Pattern Anal. Mach. Intell. 29(7), 1274–1279 (2007)
Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26(9), 1124–1137 (2004)
Duda, R., Hart, P., Stork, D.: Pattern Classification, 2nd edn. Wiley, New York (2000)
Rother, C., Kolmogorov, V., Lempitsky, V., Szummer, M.: Optimizing binary MFRs via extended roof duality. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)
Rother, C., Kumar, S., Kolmogorov, V., Blake, A.: Digital tapestry. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 589–596 (2005)
Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufman, San Mateo (1988)
Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A., Tappen, M., Rother, C.: A comparative study of energy minimization methods for Markov random fields with smoothness-based priors. IEEE Trans. Pattern Anal. Mach. Intell. 30(6), 1068–1080 (2008)
Cignoni, P., Rocchini, C., Scopigno, R.: Metro: Measuring error on simplified surfaces. Comput. Graph. Forum 17(2), 167–174 (1998)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Vidal, V., Wolf, C. & Dupont, F. Combinatorial mesh optimization. Vis Comput 28, 511–525 (2012). https://doi.org/10.1007/s00371-011-0649-9
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-011-0649-9