[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Combinatorial mesh optimization

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

A new mesh optimization framework for 3D triangular surface meshes is presented, which formulates the task as an energy minimization problem in the same spirit as in Hoppe et al. (SIGGRAPH’93: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, 1993). The desired mesh properties are controlled through a global energy function including data attached terms measuring the fidelity to the original mesh, shape potentials favoring high quality triangles, and connectivity as well as budget terms controlling the sampling density. The optimization algorithm modifies mesh connectivity as well as the vertex positions. Solutions for the vertex repositioning step are obtained by a discrete graph cut algorithm examining global combinations of local candidates.

Results on various 3D meshes compare favorably to recent state-of-the-art algorithms. Applications consist in optimizing triangular meshes and in simplifying meshes, while maintaining high mesh quality. Targeted areas are the improvement of the accuracy of numerical simulations, the convergence of numerical schemes, improvements of mesh rendering (normal field smoothness) or improvements of the geometric prediction in mesh compression techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Mesh optimization. In: SIGGRAPH’93: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques (1993)

    Google Scholar 

  2. Shewchuk, J.R.: What is a good linear element? Interpolation, conditioning, and quality measures. In: 11th International Meshing Roundtable, pp. 115–126 (2002)

    Google Scholar 

  3. Alliez, P., Ucelli, G., Gotsman, C., Attene, M.: Recent Advances in Remeshing of Surfaces. Springer, Berlin (2008)

    Google Scholar 

  4. Cohen-Steiner, D., Alliez, P., Desbrun, M.: Variational shape approximation. In: ACM Siggraph, pp. 905–914 (2004)

    Google Scholar 

  5. Valette, S., Chassery, J.-M.: Approximated centroidal Voronoi diagrams for uniform polygonal mesh coarsening. Comput. Graph. Forum 23(3), 381–389 (2004) (Eurographics 2004 Proceedings)

    Article  Google Scholar 

  6. Valette, S., Chassery, J.-M., Prost, R.: Generic remeshing of 3d triangular meshes with metric-dependent discrete Voronoi diagrams. IEEE Trans. Vis. Comput. Graph. 14(2), 369–381 (2008)

    Article  Google Scholar 

  7. Alliez, P., Colin de Verdière, E., Devillers, O., Isenburg, M.: Isotropic surface remeshing. In: IEEE Shape Modeling International, pp. 49–58 (2003)

    Chapter  Google Scholar 

  8. Guskov, I., Khodakovsky, A., Schröder, P., Sweldens, W.: Hybrid meshes: multiresolution using regular and irregular refinement. In: ACM SIGGRAPH Symposium on Computational Geometry, pp. 264–272 (2002)

    Google Scholar 

  9. Sifri, O., Sheffer, A., Gotsman, C.: Geodesic-based surface remeshing. In: 12th International Meshing Roundtable, pp. 189–199 (2003)

    Google Scholar 

  10. Peyré, G., Cohen, L.: Geodesic remeshing using front propagation. Int. J. Comput. Vis. 69(1), 145–156 (2006)

    Article  Google Scholar 

  11. Surazhsky, V., Gotsman, C.: Explicit surface remeshing. In: Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pp. 20–30 (2003)

    Google Scholar 

  12. Surazhsky, V., Alliez, P., Gotsman, C.: Isotropic remeshing of surfaces: a local parameterization approach. In: 12th International Meshing Roundtable, pp. 215–224 (2003)

    Google Scholar 

  13. Winkler, T., Hormann, K., Gotsman, C.: Mesh massage: a versatile mesh optimization framework. Vis. Comput. 24(7), 775–785 (2008)

    Article  Google Scholar 

  14. Liu, L., Tai, C.-L., Ji, Z., Wang, G.: Non-iterative approach for global mesh optimization. Comput. Aided Des. 39(9), 772–782 (2007)

    Article  Google Scholar 

  15. Nealen, A., Igarashi, T., Sorkine, O., Alexa, M.: Laplacian mesh optimization. In: ACM Graphite, pp. 381–389 (2006)

    Chapter  Google Scholar 

  16. Cohen-Steiner, D., Morvan, J.: Restricted Delaunay triangulations and normal cycle. In: ACM SIGGRAPH Symposium on Computational Geometry, pp. 312–321 (2003)

    Google Scholar 

  17. Jiao, X., Heath, M.T.: Feature detection for surface meshes. In: Proceedings of 8th International Conference on Numerical Grid Generation in Computational Field Simulations, pp. 705–714 (2002)

    Google Scholar 

  18. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6(6), 721–741 (1984)

    Article  MATH  Google Scholar 

  19. Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 147–159 (2004)

    Article  Google Scholar 

  20. Pottmann, H., Hofer, M.: Geometry of the squared distance function to curves and surfaces. In: Hege, H.-C., Polthier, K. (eds.) Visualization and Mathematics III, pp. 223–244. Springer, Berlin (2003)

    Google Scholar 

  21. Wang, W., Pottmann, H., Liu, Y.: Fitting B-spline curves to point clouds by curvature-based squared distance minimization. ACM Trans. Graph. 25(2), 214–238 (2006)

    Article  Google Scholar 

  22. Lempitsky, V., Roth, S., Carsten, R.: Fusionflow: discrete-continuous optimization for optical flow estimation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)

    Chapter  Google Scholar 

  23. Kolmogorov, V., Rother, C.: Minimizing nonsubmodular functions with graph cuts—a review. IEEE Trans. Pattern Anal. Mach. Intell. 29(7), 1274–1279 (2007)

    Article  Google Scholar 

  24. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26(9), 1124–1137 (2004)

    Article  Google Scholar 

  25. Duda, R., Hart, P., Stork, D.: Pattern Classification, 2nd edn. Wiley, New York (2000)

    Google Scholar 

  26. Rother, C., Kolmogorov, V., Lempitsky, V., Szummer, M.: Optimizing binary MFRs via extended roof duality. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)

    Chapter  Google Scholar 

  27. Rother, C., Kumar, S., Kolmogorov, V., Blake, A.: Digital tapestry. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 589–596 (2005)

    Google Scholar 

  28. Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufman, San Mateo (1988)

    Google Scholar 

  29. Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A., Tappen, M., Rother, C.: A comparative study of energy minimization methods for Markov random fields with smoothness-based priors. IEEE Trans. Pattern Anal. Mach. Intell. 30(6), 1068–1080 (2008)

    Article  Google Scholar 

  30. Cignoni, P., Rocchini, C., Scopigno, R.: Metro: Measuring error on simplified surfaces. Comput. Graph. Forum 17(2), 167–174 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Wolf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vidal, V., Wolf, C. & Dupont, F. Combinatorial mesh optimization. Vis Comput 28, 511–525 (2012). https://doi.org/10.1007/s00371-011-0649-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-011-0649-9

Keywords

Navigation