Abstract
To cope with the small sample size problem in the construction of Statistical Deformable Models (SDM), this paper proposes two novel measures that quantify the similarity of the variability characteristics among deforming 3D meshes. These measures are used as the basis of our proposed technique for partitioning a 3D mesh for the construction of piecewise SDM in a divide-and-conquer strategy. Specifically, the surface variability information is extracted by performing a global principal component analysis on the set of sample meshes. An iterative face clustering algorithm is developed for segmenting a mesh that favors grouping triangular faces having similar variability characteristics into a same mesh component. We apply the proposed mesh segmentation algorithm to the construction of piecewise SDM and evaluate the representational ability of the resulting piecewise SDM through the reconstruction of unseen meshes. Experimental results show that our approach outperforms several state-of-the-art methods in terms of the representational ability of the resulting piecewise SDM as evaluated by the reconstruction accuracy.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models—their training and application. Comput. Vis. Image Underst. 61(1), 38–59 (1995)
Lanitis, A., Taylor, C.J., Cootes, T.F.: Automatic interpretation and coding of face images using flexible models. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 743–756 (1997)
Kervrann, C., Heitz, F.: Statistical deformable model-based segmentation of image motion. IEEE Trans. Image Process. 8(4), 583–588 (1999)
Zhao, Z.E., Aylward, S.R., Teoh, E.K.: A novel 3d partitioned active shape model for segmentation of brain MR images. In: Proc. MICCAI 2005. LNCS, vol. 3749, pp. 221–228 (2005)
Okada, T., Shimada, R., Sato, Y., Hori, M., Yokota, K., Nakamoto, M., Chen, Y.W., Nakamura, H.: Automated segmentation of the liver from 3d CT images using probabilistic atlas and multi-level statistical shape model. In: Proc. MICCAI 2007. LNCS, vol. 4791, pp. 86–93 (2007)
Feng, J., Du, P., Ip, H.H.S.: Statistical piecewise assembled model (SPAM) for the representation of highly deformable medical organs. In: Proc. International Workshop on Medical Imaging and Augmented Reality. LNCS, vol. 5128, pp. 168–176 (2008)
Karni, Z., Gotsman, C.: Spectral compression of mesh geometry. In: SIGGRAPH ’00: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 279–286. ACM/Addison-Wesley, New York (2000)
Katz, S., Leifman, G., Tal, A.: Mesh segmentation using feature point and core extraction. Vis. Comput. 21, 649–658 (2005)
Garland, M., Willmott, A., Heckbert, P.S.: Hierarchical face clustering on polygonal surfaces. In: SI3D ’01: Proceedings of the 2001 Symposium on Interactive 3D Graphics, pp. 49–58. ACM Press, New York (2001)
Julius, D., Kraevoy, V., Sheffer, A.: D-charts: Quasi-developable mesh segmentation. In: Computer Graphics Forum, Proc. Eurographics 2005, vol. 24, pp. 581–590 (2005)
Lévy, B., Petitjean, S., Ray, N., Maillot, J.: Least squares conformal maps for automatic texture atlas generation. In: SIGGRAPH ’02: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, pp. 362–371. ACM Press, New York (2002)
Lien, J.M., Amato, N.M.: Approximate convex decomposition. In: Proc. the 20th Annual Symposium on Computational Geometry, pp. 457–458. ACM, New York (2004)
Shlafman, S., Tal, A., Katz, S.: Metamorphosis of polyhedral surfaces using decomposition. Comput. Graph. Forum 21, 3 (2002)
Katz, S., Tal, A.: Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Trans. Graph. 22(3), 954–961 (2003)
Zuckerberger, E., Tak, A., Shlafman, S.: Polyhedral surface decomposition with applications. Comput. Graph. 26(5), 733–743 (2002)
Kalvin, A., Taylor, R.: Superfaces: polygonal mesh simplification with bounded error. IEEE Comput. Graph. Appl. 16(3), 64–77 (1996)
Garland, M., Willmott, A., Heckbert, P.: Hierarchical face clustering on polygonal surfaces. In: Proc. ACM Symposium on Interactive 3D Graphics, pp. 49–58 (2001)
Attene, M., Falcidieno, B., Spagnuolo, M.: Hierarchical mesh segmentation based on fitting primitives. Vis. Comput. 22, 181–193 (2006)
Cohen-Steiner, D., Alliez, P., Desbrun, M.: Variational shape approximation. ACM Trans. Graph. 23(3), 905–914 (2004)
Liu, R., Zhang, H.: Segmentation of 3D meshes through spectral clustering. In: Proc. 12th Pacific Conference on Computer Graphics and Applications (PG’04), pp. 298–305 (2004)
Attene, M., Katz, S., Mortara, M., Patane, G., Spagnuolo, M.: Mesh segmentation – a comparative study. In: Proc. IEEE International Conference on Shape Modeling and Applications (SMI’06) (2006)
Shamir, A.: A survey on mesh segmentation techniques. Comput. Graph. Forum 27(6), 1539–1556 (2008)
Shamir, A.: A formulation of boundary mesh segmentation. In: Proc. the 2nd International Symposium on 3D Data Processing, Visualization, and Transmission, pp. 82–89 (2004)
Lee, T.Y., Wang, Y.S., Chen, T.G.: Segmenting a deforming mesh into near-rigid components. Vis. Comput. 22, 729–739 (2006)
Theobalt, C., Rössl, C., Aguiar, E., Seidel, H.P.: Animation collage. In: Proc. Eurographics/ACM SIGGRAPH Symposium on Computer Animation, pp. 271–280 (2007)
James, D.L., Twigg, C.D.: Skinning mesh animations. ACM Trans. Graph. 24(3), 399–407 (2005)
Wuhrer, S., Brunton, A.: Segmenting animated objects into near-rigid components. Vis. Comput. 26, 147–155 (2010)
Sattler, M., Sarlette, R., Klein, R.: Simple and efficient compression of animation sequences. In: Proc. Eurographics/ACM SIGGRAPH Symposium on Computer Animation, pp. 209–217 (2005)
Lee, T.Y., Lin, P.H., Yan, S.U., Lin, C.H.: Mesh decomposition using motion information from animation sequence. Comput. Animat. Virtual Worlds 16, 519–529 (2005)
Amjoun, R., Sondershaus, R., Straßer, W.: Compression of complex animated meshes. In: Proc. CGI 2006. LNCS, vol. 4035, pp. 606–613 (2006)
Amjoun, R., Straßer, W.: Efficient compression of 3d dynamic mesh sequences. In: Proc. the 15th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision (2007)
Feng, J., Ip, H.H.S., Lai, L.Y., Linney, A.: Robust point correspondence matching and similarity measuring for 3D models by relative angle-context distributions. Image Vis. Comput. 26, 761–775 (2008)
Borrel, P., Rappoport, A.: Simple constrained deformations for geometric modelling and interactive design. ACM Trans. Graph. 13, 137–155 (1994)
Yan, H.B., Hu, S.M., Martin, R.R., Yang, Y.L.: Shape deformation using a skeleton to drive simplex transformations. IEEE Trans. Vis. Comput. Graph. 14(3), 693–706 (2008)
Ruiz-Correa, S., Shapiro, L.G., Melia, M.: A new signature-based method for efficient 3-D object recognition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. 769–776 (2001)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Du, P., Ip, H.H.S., Hua, B. et al. Using surface variability characteristics for segmentation of deformable 3D objects with application to piecewise statistical deformable model. Vis Comput 28, 493–509 (2012). https://doi.org/10.1007/s00371-011-0646-z
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-011-0646-z