[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Fast hierarchical animated object decomposition using approximately invariant signature

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In this paper, we introduce a novel method to hierarchically decompose the animated 3d object efficiently by utilizing high-dimensional and multi-scale geometric information. The key idea is to treat the animated surface sequences as a whole and extract the near-rigid components from it. Our approach firstly detects a set of the multi-scale feature points on the animated object and computes approximately invariant signature vectors for these points. Then, exploiting both the geometric attributes and the local signature vector of each point (vertex) of the animated object, all the points (vertices) of the animated object can be clustered efficiently using a GPU-accelerated mean shift clustering algorithm. To refine the decomposition boundaries, the initially-generated boundaries of the animated object can be further improved by applying a boundary refinement technique based on Gaussian Mixture Models (GMMs). Furthermore, we propose a hierarchical decomposition technique using a topology merging strategy without introducing additional computations.

Our animated object decomposition approach does not require the topological connectivity of the animated object, thus it can be applied for both triangle mesh and point-sampled geometry sequences. The experimental results demonstrate that our method achieves both good quality results and high performance for the decomposition of animated object.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Adams, A., Gelfand, N., Dolson, J., Levoy, M.: Gaussian kd-trees for fast high-dimensional filtering. ACM Trans. Graph. 28, 21:1–21:12 (2009)

    Article  Google Scholar 

  2. Attene, M., Patanè, G.: Hierarchical structure recovery of point-sampled surfaces. In: Computer Graphics Forum, vol. 29, pp. 1905–1920. Wiley, New York (2010)

    Google Scholar 

  3. Chen, X., Golovinskiy, A., Funkhouser, T.: A benchmark for 3d mesh segmentation. ACM Trans. Graph. 28, 73:1–73:12 (2009)

    Google Scholar 

  4. Chu, H.K., Lee, T.Y.: Multiresolution mean shift clustering algorithm for shape interpolation. IEEE Trans. Vis. Comput. Graph. 15, 853–866 (2009)

    Article  Google Scholar 

  5. Desbrun, M., Meyer, M., Schröder, P., Barr, A.H.: Implicit fairing of irregular meshes using diffusion and curvature flow. In: SIGGRAPH, pp. 317–324 (1999)

    Google Scholar 

  6. Edelsbrunner, H., Harer, J., Zomorodian, A.: Hierarchical morse complexes for piecewise linear 2-manifolds. In: Proceedings of the Seventeenth Annual Symposium on Computational Geometry, pp. 70–79 (2001)

    Chapter  Google Scholar 

  7. Gal, R., Cohen-Or, D.: Salient geometric features for partial shape matching and similarity. ACM Trans. Graph. 25(1), 150 (2006)

    Article  Google Scholar 

  8. Georgescu, B., Shimshoni, I., Meer, P.: Mean shift based clustering in high dimensions: A texture classification example. In: ICCV, p. 456 (2003)

    Google Scholar 

  9. Golovinskiy, A., Funkhouser, T.: Consistent segmentation of 3D models. Comput. Graph. 33(3), 262–269 (2009)

    Article  Google Scholar 

  10. Huang, Q., Adams, B., Wicke, M., Guibas, L.: Non-rigid registration under isometric deformations. In: Proceedings of the Symposium on Geometry Processing, pp. 1449–1457. Eurographics Association, Geneva (2008)

    Google Scholar 

  11. James, D.L., Twigg, C.D.: Skinning mesh animations. ACM Trans. Graph. 24, 399–407 (2005)

    Article  Google Scholar 

  12. Katz, S., Leifman, G., Tal, A.: Mesh segmentation using feature point and core extraction. Vis. Comput. 21(8–10), 649–658 (2005)

    Article  Google Scholar 

  13. Lee, T.Y., Lin, P.H., Yan, S.U., Lin, C.H.: Mesh decomposition using motion information from animation sequences: animating geometrical models. Comput. Animat. Virtual Worlds 16, 519–529 (2005)

    Article  Google Scholar 

  14. Lee, T.Y., Wang, Y.S., Chen, T.G.: Segmenting a deforming mesh into near-rigid components. Vis. Comput. 22, 729–739 (2006)

    Article  Google Scholar 

  15. Lewis, J.P., Cordner, M., Fong, N.: Pose space deformation: a unified approach to shape interpolation and skeleton-driven deformation. In: SIGGRAPH, pp. 165–172 (2000)

    Chapter  Google Scholar 

  16. Li, H., Sumner, R., Pauly, M.: Global correspondence optimization for non-rigid registration of depth scans. In: Computer Graphics Forum. Wiley Online Library, vol. 27, pp. 1421–1430 (2008)

    Google Scholar 

  17. Guskov I., Li X.: Multi-scale features for approximate alignment of point-based surfaces. In: Proceedings of the Third Eurographics Symposium on Geometry Processing, p. 217. Eurographics Association, Geneva (2005)

    Google Scholar 

  18. Lowe, D.G.: Distinctive image features from scale-invariant reypoints. Int. J. Comput. Vis. 60, 91–110 (2004)

    Article  Google Scholar 

  19. NVIDIA: Cuda technology. http://www.nvidia.com/CUDA (2007)

  20. Paris, S., Durand, F.: A topological approach to hierarchical segmentation using mean shift. In: IEEE Conference on Computer Vision and Pattern Recognition, 2007. CVPR’07, pp. 1–8. IEEE Press, New York (2007)

    Chapter  Google Scholar 

  21. Popa, T., Julius, D., Sheffer, A.: Material-aware mesh deformations. In: Proc. of IEEE SMI 2006, p. 22 (2006)

    Google Scholar 

  22. Sattler, M., Sarlette, R., Klein, R.: Simple and efficient compression of animation sequences. In: ACM SIGGRAPH/Eurographics SCA, pp. 209–217 (2005)

    Google Scholar 

  23. Shamir, A.: A survey on mesh segmentation techniques. Comput. Graph. Forum 27(6), 1539–1556 (2008)

    Article  MATH  Google Scholar 

  24. Shapira, L., Shalom, S., Shamir, A., Cohen-Or, D., Zhang, H.: Contextual part analogies in 3D objects. Int. J. Comput. Vis. 89(2), 309–326 (2010)

    Article  Google Scholar 

  25. Tierny, J., Vandeborre, J.P., Daoudi, M.: Invariant high level reeb graphs of 3d polygonal meshes. In: 3DPVT’06, pp. 105–112 (2006)

    Google Scholar 

  26. Wuhrer, S., Brunton, A.: Segmenting animated objects into near-rigid components. Vis. Comput. 26(2), 147–155 (2010)

    Article  Google Scholar 

  27. Xiao, C., Liu, M.: Efficient mean-shift clustering using Gaussian KD-tree. In: Computer Graphics Forum. Wiley Online Library, vol. 29, pp. 2065–2073 (2010)

    Google Scholar 

  28. Xiao, C., Zheng, W., Peng, Q., Forrest, A.: Robust morphing of point-sampled geometry. Comput. Animat. Virtual Worlds 15(3–4), 201–210 (2004)

    Article  Google Scholar 

  29. Xiao, C., Miao, Y., Liu, S., Peng, Q.: A dynamic balanced flow for filtering point-sampled geometry. Vis. Comput. 22, 210–219 (2006)

    Article  Google Scholar 

  30. Yamauchi, H., Lee, S., Lee, Y., Ohtake, Y., Belyaev, A., Seidel, H.P.: Feature sensitive mesh segmentation with mean shift. In: Shape Modeling and Applications 2005, pp. 238–245 (2005)

    Google Scholar 

  31. Zhou, K., Hou, Q., Wang, R., Guo, B.: Real-time kd-tree construction on graphics hardware. ACM Trans. Graph. 27, 126:1–126:11 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunxia Xiao.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(AVI 11.5 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, B., Xiao, C., Liu, M. et al. Fast hierarchical animated object decomposition using approximately invariant signature. Vis Comput 28, 387–399 (2012). https://doi.org/10.1007/s00371-011-0625-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-011-0625-4

Keywords

Navigation