[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Multi-scale anisotropic heat diffusion based on normal-driven shape representation

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Multi-scale geometric processing has been a popular and powerful tool in graphics, which typically employs isotropic diffusion across scales. This paper proposes a novel method of multi-scale anisotropic heat diffusion on manifold, based on the new normal-driven shape representation and Edge-weighted Heat Kernels (EHK). The new shape representation, named as Normal-Controlled Coordinates (NCC), can encode local geometric details of a vertex along its normal direction and rapidly reconstruct surface geometry. Moreover, the inner product of NCC and its corresponding vertex normal, called Normal Signature (NS), defines a scalar/heat field over curved surface. The anisotropic heat diffusion is conducted using the weighted heat kernel convolution governed by local geometry. The convolution is computed iteratively based on the semigroup property of heat kernels toward accelerated performance. This diffusion is an efficient multi-scale procedure that rigorously conserves the total heat. We apply our new method to multi-scale feature detection, scalar field smoothing and mesh denoising, and hierarchical shape decomposition. We conduct various experiments to demonstrate the effectiveness of our method. Our method can be generalized to handle any scalar field defined over manifold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Alexa, M.: Differential coordinates for local mesh morphing and deformation. Vis. Comput. 19(2), 105–114 (2003)

    MATH  Google Scholar 

  2. Bronstein, A.M., Bronstein, M.M., Guibas, L.J., Ovsjanikov, M.: Shape google: geometric words and expressions for invariant shape retrieval. ACM Trans. Graph. 30(1), 1–20 (2010)

    Article  Google Scholar 

  3. Clarenz, U., Diewald, U., Rumpf, M.: Anisotropic geometric diffusion in surface processing. In: Vis, pp. 397–405 (2000)

    Google Scholar 

  4. Desbrun, M., Meyer, M., Schröder, P., Barr, A.H.: Implicit fairing of irregular meshes using diffusion and curvature flow. In: SIGGRAPH, pp. 317–324 (1999)

    Google Scholar 

  5. Desbrun, M., Meyer, M., Schröder, P., Barr, A.H.: Anisotropic feature-preserving denoising of height fields and bivariate data. In: GI, pp. 145–152 (2000)

    Google Scholar 

  6. Fleishman, S., Drori, I., Cohen-Or, D.: Bilateral mesh denoising. ACM Trans. Graph. 22(3), 950–953 (2003)

    Article  Google Scholar 

  7. Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. In: SIGGRAPH, pp. 209–216 (1997)

    Chapter  Google Scholar 

  8. Gȩbal, K., Bærentzen, J.A., Aanæs, H., Larsen, R.: Shape analysis using the auto diffusion function. In: SGP, pp. 1405–1413 (2009)

    Google Scholar 

  9. Grigor’yan, A.: Escape rate of Brownian motion on Riemannian manifolds. Appl. Anal. 71(1), 63–89 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hastie, T., Tibshirani, R.: Discriminant adaptive nearest neighbor classification. IEEE Trans. Pattern Anal. Mach. Intell. 18(6), 607–616 (1996)

    Article  Google Scholar 

  11. Hildebrandt, K., Polthier, K.: Anisotropic filtering of non-linear surface features. Comput. Graph. Forum 23(3), 391–400 (2004)

    Article  Google Scholar 

  12. Hoppe, H.: Progressive meshes. In: SIGGRAPH, pp. 99–108 (1996)

    Google Scholar 

  13. Hou, T., Qin, H.: Efficient computation of scale-space features for deformable shape correspondences. In: ECCV, pp. 384–397 (2010)

    Google Scholar 

  14. Hua, J., Lai, Z., Dong, M., Gu, X., Qin, H.: Geodesic distance-weighted shape vector image diffusion. IEEE Trans. Vis. Comput. Graph. 14(6), 1643–1650 (2008)

    Article  Google Scholar 

  15. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C., Liu, H.H.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. R. Soc. Lond. Proc., Ser. A, Math. Phys. Eng. 454 (1971), 903–995 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Huang, N.E., Wu, Z.: A review on hilbert-huang transform: Method and its applications to geophysical studies. Rev. Geophys. 46, RG2006 (2008)

    Article  Google Scholar 

  17. Jin, S.: A comparison of algorithms for vertex normal computation. Vis. Comput. 21(1–2), 71–82 (2005)

    Article  Google Scholar 

  18. Jones, T.R., Durand, F., Desbrun, M.: Non-iterative feature-preserving mesh smoothing. ACM Trans. Graph. 22(3), 943–949 (2003)

    Article  Google Scholar 

  19. Ju, T., Schaefer, S., Warren, J.: Mean value coordinates for closed triangular meshes. In: SIGGRAPH, pp. 561–566 (2005)

    Google Scholar 

  20. Lee, C.H., Varshney, A., Jacobs, D.W.: Mesh saliency. ACM Trans. Graph. 24(3), 659–666 (2005)

    Article  Google Scholar 

  21. Lipman, Y., Sorkine, O., Cohen-Or, D., Levin, D., Rössl, C., Seidel, H.P.: Differential coordinates for interactive mesh editing. In: SMI, pp. 181–190 (2004)

    Google Scholar 

  22. Lipman, Y., Sorkine, O., Levin, D., Cohen-Or, D.: Linear rotation-invariant coordinates for meshes. ACM Trans. Graph. 24(3), 479–487 (2005)

    Article  Google Scholar 

  23. Mémoli, F.: Spectral Gromov-Wasserstein distances for shape matching. In: NORDIA, pp. 256–263 (2009)

    Google Scholar 

  24. Meyer, M., Desbrun, M., Schröder, P., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. In: VisMath, pp. 1–26 (2002)

    Google Scholar 

  25. Ovsjanikov, M., Mérigot, Q., Mémoli, F., Guibas, L.: One point isometric matching with the heat kernel. Comput. Graph. Forum 29(5), 1555–1564 (2010)

    Article  Google Scholar 

  26. Patanè, G., Falcidieno, B.: Multi-scale feature spaces for shape processing and analysis. In: SMI, pp. 113–123 (2010)

    Google Scholar 

  27. Reuter, M., Wolter, F.E., Peinecke, N.: Laplace-Beltrami spectra as ‘shape-dna’ of surfaces and solids. Comput. Aided Des. 38(4), 342–366 (2006)

    Article  Google Scholar 

  28. Seo, S., Chung, M., Vorperian, H.: Heat kernel smoothing using Laplace-Beltrami eigenfunctions. In: MICCAI, pp. 505–512 (2010)

    Google Scholar 

  29. Sheffer, A., Kraevoy, V.: Pyramid coordinates for morphing and deformation. In: 3DPVT, pp. 68–75 (2004)

    Google Scholar 

  30. Su, Z., Wang, H., Cao, J.: Mesh denoising based on differential coordinates. In: SMI, pp. 1–6 (2009)

    Google Scholar 

  31. Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multi-scale signature based on heat diffusion. In: SGP, pp. 1383–1392 (2009)

    Google Scholar 

  32. Tierny, J., Vandeborre, J.P., Daoudi, M.: Topology driven 3d mesh hierarchical segmentation. In: SMI, pp. 215–220 (2007)

    Google Scholar 

  33. Vaxman, A., Ben-Chen, M., Gotsman, C.: A multi-resolution approach to heat kernels on discrete surfaces. ACM Trans. Graph. 29(4), 1–10 (2010)

    Article  Google Scholar 

  34. Zaharescu, A., Boyer, E., Varanasi, K., Horaud, R.: Surface feature detection and description with applications to mesh matching. In: CVPR, pp. 373–380 (2009)

    Google Scholar 

  35. Zou, G., Hua, J., Lai, Z., Gu, X., Dong, M.: Intrinsic geometric scale space by shape diffusion. IEEE Trans. Vis. Comput. Graph. 15(6), 1193–1200 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengfa Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Hou, T., Su, Z. et al. Multi-scale anisotropic heat diffusion based on normal-driven shape representation. Vis Comput 27, 429–439 (2011). https://doi.org/10.1007/s00371-011-0582-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-011-0582-y

Keywords

Navigation