Abstract
Multi-scale geometric processing has been a popular and powerful tool in graphics, which typically employs isotropic diffusion across scales. This paper proposes a novel method of multi-scale anisotropic heat diffusion on manifold, based on the new normal-driven shape representation and Edge-weighted Heat Kernels (EHK). The new shape representation, named as Normal-Controlled Coordinates (NCC), can encode local geometric details of a vertex along its normal direction and rapidly reconstruct surface geometry. Moreover, the inner product of NCC and its corresponding vertex normal, called Normal Signature (NS), defines a scalar/heat field over curved surface. The anisotropic heat diffusion is conducted using the weighted heat kernel convolution governed by local geometry. The convolution is computed iteratively based on the semigroup property of heat kernels toward accelerated performance. This diffusion is an efficient multi-scale procedure that rigorously conserves the total heat. We apply our new method to multi-scale feature detection, scalar field smoothing and mesh denoising, and hierarchical shape decomposition. We conduct various experiments to demonstrate the effectiveness of our method. Our method can be generalized to handle any scalar field defined over manifold.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Alexa, M.: Differential coordinates for local mesh morphing and deformation. Vis. Comput. 19(2), 105–114 (2003)
Bronstein, A.M., Bronstein, M.M., Guibas, L.J., Ovsjanikov, M.: Shape google: geometric words and expressions for invariant shape retrieval. ACM Trans. Graph. 30(1), 1–20 (2010)
Clarenz, U., Diewald, U., Rumpf, M.: Anisotropic geometric diffusion in surface processing. In: Vis, pp. 397–405 (2000)
Desbrun, M., Meyer, M., Schröder, P., Barr, A.H.: Implicit fairing of irregular meshes using diffusion and curvature flow. In: SIGGRAPH, pp. 317–324 (1999)
Desbrun, M., Meyer, M., Schröder, P., Barr, A.H.: Anisotropic feature-preserving denoising of height fields and bivariate data. In: GI, pp. 145–152 (2000)
Fleishman, S., Drori, I., Cohen-Or, D.: Bilateral mesh denoising. ACM Trans. Graph. 22(3), 950–953 (2003)
Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. In: SIGGRAPH, pp. 209–216 (1997)
Gȩbal, K., Bærentzen, J.A., Aanæs, H., Larsen, R.: Shape analysis using the auto diffusion function. In: SGP, pp. 1405–1413 (2009)
Grigor’yan, A.: Escape rate of Brownian motion on Riemannian manifolds. Appl. Anal. 71(1), 63–89 (1999)
Hastie, T., Tibshirani, R.: Discriminant adaptive nearest neighbor classification. IEEE Trans. Pattern Anal. Mach. Intell. 18(6), 607–616 (1996)
Hildebrandt, K., Polthier, K.: Anisotropic filtering of non-linear surface features. Comput. Graph. Forum 23(3), 391–400 (2004)
Hoppe, H.: Progressive meshes. In: SIGGRAPH, pp. 99–108 (1996)
Hou, T., Qin, H.: Efficient computation of scale-space features for deformable shape correspondences. In: ECCV, pp. 384–397 (2010)
Hua, J., Lai, Z., Dong, M., Gu, X., Qin, H.: Geodesic distance-weighted shape vector image diffusion. IEEE Trans. Vis. Comput. Graph. 14(6), 1643–1650 (2008)
Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C., Liu, H.H.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. R. Soc. Lond. Proc., Ser. A, Math. Phys. Eng. 454 (1971), 903–995 (1998)
Huang, N.E., Wu, Z.: A review on hilbert-huang transform: Method and its applications to geophysical studies. Rev. Geophys. 46, RG2006 (2008)
Jin, S.: A comparison of algorithms for vertex normal computation. Vis. Comput. 21(1–2), 71–82 (2005)
Jones, T.R., Durand, F., Desbrun, M.: Non-iterative feature-preserving mesh smoothing. ACM Trans. Graph. 22(3), 943–949 (2003)
Ju, T., Schaefer, S., Warren, J.: Mean value coordinates for closed triangular meshes. In: SIGGRAPH, pp. 561–566 (2005)
Lee, C.H., Varshney, A., Jacobs, D.W.: Mesh saliency. ACM Trans. Graph. 24(3), 659–666 (2005)
Lipman, Y., Sorkine, O., Cohen-Or, D., Levin, D., Rössl, C., Seidel, H.P.: Differential coordinates for interactive mesh editing. In: SMI, pp. 181–190 (2004)
Lipman, Y., Sorkine, O., Levin, D., Cohen-Or, D.: Linear rotation-invariant coordinates for meshes. ACM Trans. Graph. 24(3), 479–487 (2005)
Mémoli, F.: Spectral Gromov-Wasserstein distances for shape matching. In: NORDIA, pp. 256–263 (2009)
Meyer, M., Desbrun, M., Schröder, P., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. In: VisMath, pp. 1–26 (2002)
Ovsjanikov, M., Mérigot, Q., Mémoli, F., Guibas, L.: One point isometric matching with the heat kernel. Comput. Graph. Forum 29(5), 1555–1564 (2010)
Patanè, G., Falcidieno, B.: Multi-scale feature spaces for shape processing and analysis. In: SMI, pp. 113–123 (2010)
Reuter, M., Wolter, F.E., Peinecke, N.: Laplace-Beltrami spectra as ‘shape-dna’ of surfaces and solids. Comput. Aided Des. 38(4), 342–366 (2006)
Seo, S., Chung, M., Vorperian, H.: Heat kernel smoothing using Laplace-Beltrami eigenfunctions. In: MICCAI, pp. 505–512 (2010)
Sheffer, A., Kraevoy, V.: Pyramid coordinates for morphing and deformation. In: 3DPVT, pp. 68–75 (2004)
Su, Z., Wang, H., Cao, J.: Mesh denoising based on differential coordinates. In: SMI, pp. 1–6 (2009)
Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multi-scale signature based on heat diffusion. In: SGP, pp. 1383–1392 (2009)
Tierny, J., Vandeborre, J.P., Daoudi, M.: Topology driven 3d mesh hierarchical segmentation. In: SMI, pp. 215–220 (2007)
Vaxman, A., Ben-Chen, M., Gotsman, C.: A multi-resolution approach to heat kernels on discrete surfaces. ACM Trans. Graph. 29(4), 1–10 (2010)
Zaharescu, A., Boyer, E., Varanasi, K., Horaud, R.: Surface feature detection and description with applications to mesh matching. In: CVPR, pp. 373–380 (2009)
Zou, G., Hua, J., Lai, Z., Gu, X., Dong, M.: Intrinsic geometric scale space by shape diffusion. IEEE Trans. Vis. Comput. Graph. 15(6), 1193–1200 (2009)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wang, S., Hou, T., Su, Z. et al. Multi-scale anisotropic heat diffusion based on normal-driven shape representation. Vis Comput 27, 429–439 (2011). https://doi.org/10.1007/s00371-011-0582-y
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-011-0582-y