[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

An iterative/subdivision hybrid algorithm for curve/curve intersection

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

The problem of finding all intersections between two space curves is one of the fundamental problems in computer-aided geometric design and computational geometry. This article proposes a new iterative/subdivision hybrid algorithm for this problem. We use a test based on Kantorovich’s theorem to detect the starting point from which Newton’s method converges quadratically and a subdivision scheme to exclude certain regions that do not contain any intersections. Our algorithm is guaranteed to detect all intersections in the domain for nondegenerate and non-ill-posed cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Deuflhard, P., Heindl, G.: Affine invariant convergence theorems for Newton’s method and extensions to related methods. SIAM J. Numer. Anal. 16, 1–10 (1980)

    Article  MathSciNet  Google Scholar 

  2. Farouki, R.T., Goodman, T.N.T.: On the optimal stability of the Bernstein basis. Math. Comput. 65(216), 1553–1566 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  3. Farouki, R.T., Kuspa, B.K., Manni, C., Sestini, A.: Efficient solution of the complex quadratic tridiagonal system for \(\mathcal{C}^{2}\) PH quintic splines. Numer. Algorithms 27, 35–60 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Farouki, R.T., Rajan, V.T.: On the numerical condition of polynomials in Bernstein form. Comput. Aided Geom. Des. 4(3), 191–216 (1987). doi:10.1016/0167-8396(87)90012-4

    Article  MATH  MathSciNet  Google Scholar 

  5. Hawat, R.N., Piegl, L.A.: Genetic algorithm approach to curve–curve intersection. Math.l Eng. Ind. 7(2), 269–282 (1998)

    MATH  MathSciNet  Google Scholar 

  6. Heath, M.T.: Scientific Computing: An Introductory Survey. McGraw-Hill, New York (2005)

    Google Scholar 

  7. Hoschek, J., Lasser, D.: Fundamentals of Computer Aided Geometric Design. A.K. Peters, Wellesley (1993). Translated by L.L. Schumaker

    MATH  Google Scholar 

  8. Houghton, E.G., Emnett, R.F., Factor, J.D., Sabharwal, C.L.: Implementation of a divide-and-conquer method for intersection of parametric surfaces. Comput. Aided Geom. Des. 2(1–3), 173–183 (1985)

    Article  MATH  Google Scholar 

  9. Hu, C.Y., Maekawa, T., Sherbrooke, E.C., Patrikalakis, N.M.: Robust interval algorithm for curve intersections. Comput. Aided Des. 28(6/7), 495–506 (1996)

    Article  Google Scholar 

  10. Kantorovich, L.: On Newton’s method for functional equations (Russian). Dokl. Akad. Nauk SSSR 59, 1237–1240 (1948)

    Google Scholar 

  11. Limaiem, A., Trochu, F.: Geometric algorithms for the intersection of curves and surfaces. Comput. Graph. 19(3), 391–403 (1995)

    Article  Google Scholar 

  12. Maekawa, T., Patrikalakis, N.M.: Computation of singularities and intersections of offsets of planar curves. Comput. Aided Geom. Des. 10(5), 407–429 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  13. Maekawa, T., Patrikalakis, N.M.: Interrogation of differential geometry properties for design and manufacture. Vis. Comput. 10(4), 216–237 (1994)

    Article  Google Scholar 

  14. Megiddo, N.: Linear programming in linear time when the dimension is fixed. J. ACM 31, 114–127 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  15. Mortenson, M.E.: Geometric Modeling. Wiley, New York (1985)

    Google Scholar 

  16. Patrikalakis, N.M.: Surface-to-surface intersections. IEEE Comput. Graph. Appl. 13(1), 89–95 (1993)

    Article  Google Scholar 

  17. Rubin, S.M., Whitted, T.: A 3-dimensional representation for fast rendering of complex scenes. SIGGRAPH Comput. Graph. 14(3), 110–116 (1980)

    Article  Google Scholar 

  18. Sederberg, T.W., Nishita, T.: Curve intersection using Beźier clipping. Comput. Aided Des. 22(9), 538–549 (1990). doi:10.1016/0010-4485(90)90039-F

    Article  MATH  Google Scholar 

  19. Srijuntongsiri, G.: Finding all intersections between planar curves. In: ECTI-CON 2010, pp. 1241–1244 (2010)

    Google Scholar 

  20. Srijuntongsiri, G., Vavasis, S.A.: A condition number analysis of a line–surface intersection algorithm. SIAM J. Sci. Comput. 30(2), 1064–1081 (2007)

    Article  MathSciNet  Google Scholar 

  21. Srijuntongsiri, G., Vavasis, S.A.: Properties of polynomial bases used in a line-surface intersection algorithm. In: Parallel Processing and Applied Mathematics (2009)

    Google Scholar 

  22. Whitted, T.: An improved illumination model for shaded display. Commun. ACM 23(6), 343–349 (1980)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gun Srijuntongsiri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srijuntongsiri, G. An iterative/subdivision hybrid algorithm for curve/curve intersection. Vis Comput 27, 365–371 (2011). https://doi.org/10.1007/s00371-010-0543-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-010-0543-x

Keywords