[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Realistic simulation of mixing fluids

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Recently, simulation of mixing fluids, for which wide applications can be found in multimedia, computer games, special effects, virtual reality, etc., is attracting more and more attention. Most previous methods focus separately on binary immiscible mixing fluids or binary miscible mixing fluids. Until now, little attention has been paid to realistic simulation of multiple mixing fluids. In this paper, based on the solution principles in physics, we present a unified framework for realistic simulation of liquid–liquid mixing with different solubility, which is called LLSPH. In our method, the mixing process of miscible fluids is modeled by a heat-conduction-based Smooth Particle Hydrodynamics method. A special self-diffusion coefficient is designed to simulate the interactions between miscible fluids. For immiscible fluids, marching-cube-based method is adopted to trace the interfaces between different types of fluids efficiently. Then, an optimized spatial hashing method is adopted for simulation of boundary-free mixing fluids such as the marine oil spill. Finally, various realistic scenes of mixing fluids are rendered using our method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Stam, J.: Stable fluids. In: Proceedings of ACM SIGGRAPH, pp. 121–128 (1999)

    Google Scholar 

  2. Fedkiw, R., Stam, J., Jensen, H.W.: Visual simulation of smoke. In: Proceedings of ACM SIGGRAPH, pp. 15–22 (2001)

    Google Scholar 

  3. Foster, N., Fedkiw, R.: Practical animation of liquids. In: Proceedings of SIGGRAPH, pp. 23–30 (2001)

    Google Scholar 

  4. Enright, D., Marschner, S., Fedkiw, R.: Animation and rendering of complex water surfaces. In: Proceedings of SIGGRAPH, pp. 736–744 (2001)

    Google Scholar 

  5. Premože, S., Tasdizen, T., Bigler, J., Lefohn, A., Whitaker, R.T.: Particle-based simulation of fluids. In: Proceedings of Eurographics, pp. 401–410 (2003)

    Google Scholar 

  6. Nguyen, D.Q., Fedkiw, R., Jensen, H.W.: Physically based modeling and animation of fire. In: Proceedings of SIGGRPAH, pp. 721–728 (2002)

    Google Scholar 

  7. Müller, M., Charypar, D., Gross, M.: Particle based fluid simulation for interactive applications. In: Proceedings of ACM SIGGRAPH Symposium on Computer Animation, pp. 154–159 (2003)

    Google Scholar 

  8. Kelager, M.: Lagrangian fluid dynamics using smoothed particle hydrodynamics. University of Copenhagen: Department of Computer Science (2006)

  9. Stam, J., Fiume, E.: Depicting fire and other gaseous phenomena using diffusion processes. In: Proceedings of ACM SIGGRAPH, pp. 129–136 (1995)

    Google Scholar 

  10. Takeshita, D., Ota, S., Tamura, M., Fujimoto, T., Muraoka, K., Chiba, N.: Particle-based visual simulation of explosive flames. In: Proceedings of 11th Pacific Conference on Computer Graphics and Applications, pp. 482–486 (2003)

    Google Scholar 

  11. Keiser, R., Adams, B., Gasser, D., Bazzi, P., Dutré, P., Gross, M.: A unified Lagrangian approach to solid–fluid animation. In: Proceedings of Eurographics Symposium on Point-Based Graphics, pp. 125–133 (2005)

    Chapter  Google Scholar 

  12. Premože, S., Tasdizen, T., Bigler, J.: Particle-based simulation of fluids. Comput. Graph. Forum 22(3), 401–410 (2003)

    Article  Google Scholar 

  13. Becker, M., Teschner, M.: Weakly compressible SPH for free surface flows. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 209–217 (2007)

    Google Scholar 

  14. Mizuono, R., Dobashi, Y., Chen, B.Y., Nishita, T.: Physics motivated modeling of volcanic clouds as a two-fluids system. In: Proceedings of 11th Pacific Conference on Computer Graphics and Application, pp. 434–439 (2003)

    Google Scholar 

  15. Zhu, H.B., Liu, X.H., Liu, Y.Q., Wu, E.H.: Simulation of miscible binary mixtures based on lattice Boltzmann method. In: Proceedings of Computer Animation and Social Agents, pp. 403–410 (2006)

    Google Scholar 

  16. Hong, J.M., Kim, C.H.: Animation of bubbles in liquid. Comput. Graph. Forum 22(3), 253–262 (2003)

    Article  MathSciNet  Google Scholar 

  17. Hong, J.M., Kim, C.H.: Discontinuous fluids. In: Proceedings of ACM SIGGRAPH, pp. 915–920 (2005)

    Google Scholar 

  18. Hong, J.M., Lee, H.Y., Yoon, J.C., Kim, C.H.: Bubbles alive. In: Proceedings of ACM SIGGRAPH, pp. 481–484 (2008)

    Google Scholar 

  19. Kim, B., Liu, Y., Llamas, I., Jiao, X., Rossignac, J.: Simulation of bubbles in foam with the volume control method. In: Proceedings of ACM SIGGRAPH, pp. 481–487 (2007)

    Google Scholar 

  20. Cleary, P.W., Pyo, S.H., Prakash, M., Koo, B.K.: Bubbling and frothing liquids. In: Proceedings of ACM SIGGRAPH, pp. 971–976 (2007)

    Google Scholar 

  21. Thürey, N., Sadlo, F., Schirm, S., Muller-Fischer, M., Gross, M.: Real-time simulations of bubbles and foam within a shallow water framework. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 191–198 (2007)

    Google Scholar 

  22. Mihalef, V., Unlusu, B., Metaxas, D., Hussaini, M.Y.: Physics-based boiling simulation. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 317–324 (2006)

    Google Scholar 

  23. Muller, M., Solenthaler, B., Keiser, R., Gross, M.: Particle based fluid-fluid interaction. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 237–244 (2005)

    Chapter  Google Scholar 

  24. Losasso, F., Shinar, T., Selle, A., Fedkiw, R.: Multiple interacting liquids. In: Proceedings of ACM SIGGRAPH, pp. 812–819 (2006)

    Google Scholar 

  25. Losasso, F., Talton, J., Kwatra, N., Fedkiw, R.: Two-way coupled SPH and particle level set fluid simulation. IEEE Trans. Vis. Comput. Graph. 14(4), 797–804 (2008)

    Article  Google Scholar 

  26. Park, J., Kim, Y., Wi, D., Kang, N., Shin, S.Y., Noh, J.: A unified handling of immiscible and miscible fluids. Comput. Animat. Virtual Worlds 19(3–4), 455–467 (2008)

    Article  Google Scholar 

  27. Kang, N., Park, J., Noh, J., Shin, S.Y.: A hybrid approach to multiple fluid simulation using volume fractions. Comput. Graph. Forum 29(2), 685–694 (2010)

    Article  Google Scholar 

  28. Lenaerts, T., Dutré, P.: Mixing fluids and granular materials. Comput. Graph. Forum 28(2), 213–218 (2009)

    Article  Google Scholar 

  29. Bao, K., Wu, X., Zhang, H., Wu, E.: Volume fraction based miscible and immiscible fluid animation. Comput. Animat. Virtual Worlds 21(3–4), 401–410 (2010)

    Google Scholar 

  30. McNaught, A.D., Wilkinson, A.: Compendium of Chemical terminology. Blackwell Scientific Publications, Oxford (1997)

    Google Scholar 

  31. Monaghan, J.: Smoothed particle hydrodynamics. Rep. Prog. Phys. 68(8), 1703–1759 (2005)

    Article  MathSciNet  Google Scholar 

  32. William, E.L., Harvey, E.C.: Marching cubes: a high resolution 3D surface construction algorithm. Comput. Graph. 21(4), 163–169 (1987)

    Article  Google Scholar 

  33. Christof, R.S., Markus, H., Timo, R., Patric, L.: Advanced illumination techniques for GPU-based volume ray-casting. In: ACM SIGGRAPH Course (2008)

    Google Scholar 

  34. Teschner, M., Heidelberger, B., Mueller, M., Pomeranets, D., Gross, M.: Optimized spatial hashing for collision detection of deformable objects. In: Proceedings of Vision, Modeling, Visualization VMV, Munich, Germany, pp. 47–54 (2003)

    Google Scholar 

  35. Becker, M., Tessendorf, H., Teschner, M.: Direct forcing for Lagrangian rigid–fluid coupling. IEEE Trans. Vis. Comput. Graph. 15(3), 493–503 (2009)

    Article  Google Scholar 

  36. Solenthaler, B., Pajarola, R.: Density contrast SPH interfaces. In: Proceedings of ACM SIGGRAPH/EG Symposium on Computer Animation, pp. 211–218 (2008)

    Google Scholar 

  37. Solenthaler, B., Pajarola, R.: Predictive-corrective incompressible SPH. ACM Trans. Graph. 28(3), 1–6 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiguang Liu.

Electronic Supplementary Material

Below are the links to the electronic supplementary material.

(AVI 218 KB)

(AVI 273 KB)

(AVI 185 KB)

(AVI 552 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, S., Liu, Q. & Peng, Q. Realistic simulation of mixing fluids. Vis Comput 27, 241–248 (2011). https://doi.org/10.1007/s00371-010-0531-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-010-0531-1

Keywords

Navigation