[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Segmenting animated objects into near-rigid components

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We present a novel approach to solve the problem of segmenting a sequence of animated objects into near-rigid components based on k given poses of the same non-rigid object. We model the segmentation problem as a clustering problem in dual space and find near-rigid segments with the property that segment boundaries are located at regions of large deformation. The presented approach is asymptotically faster than previous approaches that achieve the same property and does not require any user-specified parameters. However, if desired, the user may interactively change the number of segments. We demonstrate the practical value of our approach using experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Anguelov, D., Koller, D., Pang, H.-C., Srinivasan, P., Thrun, S.: Recovering articulated object models from 3D range data. In: Uncertainty in Artificial Intelligence Conference (2004)

  2. Baran, I., Popović, J.: Automatic rigging and animation of 3d characters. ACM Trans. Graph. 26(3) (2007). Proceedings of SIGGRAPH

  3. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Calculus of non-rigid surfaces for geometry and texture manipulation. IEEE Trans. Vis. Comput. Graph. 13(5), 902–913 (2007)

    Google Scholar 

  4. Davies, R.H., Twining, C.J., Cootes, T.F., Waterton, J.C., Taylor, C.J.: 3d statistical shape models using direct optimization of description length. Lect. Not. Comput. Sci. 2352, 3–20 (2002)

    Article  Google Scholar 

  5. Huang, Q., Adams, B., Wicke, M., Guibas, L.J.: Non-rigid registration under isometric deformations. Comput. Graph. Forum 27(5) (2008) (Special Issue of Symposium on Geometry Processing 2008)

  6. Jain, V., Zhang, H., van Kaick, O.: Non-rigid spectral correspondence of triangle meshes. Int. J. Shape Model. 13(1), 101–124 (2007). Special Issue of SMI 2006

    Article  MATH  MathSciNet  Google Scholar 

  7. James, D.L., Twigg, C.D.: Skinning mesh animations. ACM Trans. Graph. 24(3), 399–407 (2005). Proceedings of SIGGRAPH

    Article  Google Scholar 

  8. Katz, S., Tal, A.: Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Trans. Graph. 22(3), 954–96 (2003)

    Article  Google Scholar 

  9. Katz, S., Leifman, G., Tal, A.: Mesh segmentation using feature point and core extraction. Vis. Comput. 21(8–10), 865–875 (2005)

    Google Scholar 

  10. Kleinberg, J., Tardos, E.: Algorithm Design. Addison-Wesley, Reading (2005)

    Google Scholar 

  11. Lee, T.-Y., Lin, P.-H., Yan, S.-U., Lin, C.-H.: Mesh decomposition using motion information from animation sequences: Animating geometrical models. Comput. Animat. Virtual Worlds 16(3–4), 519–529 (2005)

    Article  Google Scholar 

  12. Lee, T.-Y., Wang, Y.-S., Chen, T.-G.: Segmenting a deforming mesh into near-rigid components. Vis. Comput. 22(9), 729–739 (2006)

    Article  Google Scholar 

  13. Lewis, J., Cordner, M., Fong, N.: Pose space deformation: A unified approach to shape interpolation and skeleton-driven deformation (2000)

  14. Lien, J.-M., Amato, N.M.: Approximate convex decomposition of polygons. Comput. Geom. Theory Appl. 35(1), 100–123 (2006)

    MATH  MathSciNet  Google Scholar 

  15. Liu, R., Zhang, H.: Mesh segmentation via spectral embedding and contour analysis. Comput. Graph. Forum 26, 385–394 (2007). (Special Issue of Eurographics 2007)

    Article  Google Scholar 

  16. Sattler, M., Sarlette, R., Klein, R.: Simple and efficient compression of animation sequences. In: SCA ’05: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 209–217 (2005)

  17. Shamir, A.: A survey on mesh segmentation techniques. Comput. Graph. Forum 27(6), 1539–1556 (2008).

    Article  MATH  Google Scholar 

  18. Shilane, P., Min, P., Kazhdan, M., Funkhouser, T.: The princeton shape benchmark. In: Proceedings of Shape Modeling International (2004)

  19. Siek, J.G., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference Manual. Addison-Wesley, Reading (2002)

    Google Scholar 

  20. Sumner, R.W., Popović, J.: Deformation transfer for triangle meshes. ACM Trans. Graph. 23(3), 399–405 (2004). Proceedings of SIGGRAPH

    Article  Google Scholar 

  21. Tierny, J., Vandeborre, J.-P., Daoudi, M.: Invariant high level reeb graphs of 3D polygonal meshes. In: 3rd IEEE International Symposium on 3D Data Processing Visualization Transmission (2006)

  22. Zhang, H., Sheffer, A., Cohen-Or, D., Zhou, Q., van Kaick, O., Tagliasacchi, A.: Deformation-driven shape correspondence. Comput. Graph. Forum 27(5) (2008). (Special Issue of Symposium on Geometry Processing 2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefanie Wuhrer.

Additional information

Research supported in part by HPCVL.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wuhrer, S., Brunton, A. Segmenting animated objects into near-rigid components. Vis Comput 26, 147–155 (2010). https://doi.org/10.1007/s00371-009-0394-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-009-0394-5

Keywords