[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A new image registration scheme based on curvature scale space curve matching

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We propose a new image registration scheme for remote sensing images. This scheme includes three steps in sequence. First, a segmentation process is performed on the input image pair. Then the boundaries of the segmented regions in two images are extracted and matched. These matched regions are called confidence regions. Finally, a non-linear optimization is performed in the matched regions only to obtain a global set of transform parameters. Experiments show that this scheme is more robust and converges faster than registration of the original image pair. We also develop a new curve-matching algorithm based on curvature scale space to facilitate the second step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Abbasi, S., Mokhtarian, F., Kittler, J.: Enhancing CSS-based shape retrieval for objects with shallow concavities. Image Vis. Comput. 18(3), 199–211 (2000)

    Article  Google Scholar 

  2. Amini, A.A., Weymouth, T.E., Jain, R.C.: Using dynamic programming for solving variational problems in vision. IEEE Trans. Pattern Anal. Mach. Intell. 12(9), 855–867 (1990)

    Article  Google Scholar 

  3. Bentoutou, Y., Taleb, N., Kpalma, K., Ronsin, J.: An automatic image registration for applications in remote sensing. IEEE Trans. Geoscience Remote Sensing 43, 2127–2137 (2005)

    Article  Google Scholar 

  4. Boyle, R., Sonka, M., Hlavac, V.: Image Processing, Analysis and Machine Vision. Chapman & Hall, London (1998)

    Google Scholar 

  5. Brown, L.G.: A survey of image registration techniques. ACM Comput. Surv. 24, 325–376 (1992)

    Article  Google Scholar 

  6. Brown, L.G.: A survey of image registration techniques. ACM Comput. Surveys 24(4), 325–376 (1992)

    Article  Google Scholar 

  7. Chalermwat, P.: High-performance automatic image registration for remote sensing. PhD thesis, George Mason University (1999)

  8. Chang, C.-C., Chen, I.-Y., Huang, Y.-S.: Pull-in time dynamics as a measure of absolute pressure. In: Proceedings of the 16th International Conference on Pattern Recognition, pp. 386–389. IEEE Computer Society (2002)

  9. Chellappa, R., Bagdazian, R.: Fourier coding of image boundaries. IEEE Trans. Pattern Anal. Mach. Intell. 6, 102–105 (1984)

    Google Scholar 

  10. Chen, H.-M., Varshney, P.K., Arora, M.K.: Performance of mutual information similarity measure for registration of multitemporal remote sensing images. IEEE Trans. Pattern Anal. Mach. Intell. 24, 603–619 (2002)

    Article  Google Scholar 

  11. Dai, X., Khorram, S.: A feature-based image registration algorithm using improved chain-code representation combined with invariant moments. IEEE Trans. Geosci. Remote Sen. 37, 2351–2362 (1999)

    Article  Google Scholar 

  12. Delaere, M.F., Vandermeulen, D., Suentens, D., Collignon P., Marchal, A., Marchal, G.: Automated multimodality image registration using information theory. In: Proceedings of the 14th International Conference on Information Processing in Medical Imaging, vol. 3, pp. 263–274. Kluwer Academic Publisher (1995)

  13. Ding, L., Kularatna, T.C., Goshtasby, A., Satter, M.: Volumetric image registration by template matching. In: K.M. Hanson (ed.) Proc. SPIE, vol. 3979, pp. 1235–1246, Medical Imaging 2000: Image Processing, Kenneth M. Hanson; ed., Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference, vol. 3979, pp. 1235–1246 (2000)

  14. Flusser, J., Suk, T.: A moment-based approach to registration of images with affine geometric distortion. IEEE Trans. Geosci. Remote Sen. 32, 382–387 (1994)

    Article  Google Scholar 

  15. Fulong, C., Hong, Z., Chao, W.: A novel feature matching method in airborne sar image registration. In: Geoscience and Remote Sensing Symposium, 2005. IGARSS’05. Proceedings, pp. 4722–4724. IEEE Geoscience and Remote Sensing Society (2005)

  16. Goshtasby, A.: Description and discrimination of planar shapes using shape matrices. IEEE Trans. Pattern Anal. Mach. Intell. 7, 738–743 (1985)

    Article  Google Scholar 

  17. Holden, M., Hawkes, D.J., Hill, D.L.G., Batchelor, P.G.: Medical image registration. Phys. Med. Biol. 46, 1–45 (2001)

    Article  Google Scholar 

  18. Johansson, M.: Image registration with simulated annealing and genetic algorithm. Master of Science Thesis, Stockholm, Sweden (2006)

  19. Kuhn, H.W.: The Hungarian method for the assignment problem. Nav. Res. Logist. Q. 2, 83–97 (1955)

    Article  MathSciNet  Google Scholar 

  20. LeMoigne, K.L., Zavorin, J., Cole-Rhodes, I., Johnson, A.A.: Multiresolution registration of remote sensing imagery by optimization of mutual information using a stochastic gradient. IEEE Trans. Image Process. 12, 1495–1511 (2003)

    Article  MathSciNet  Google Scholar 

  21. Li, H., Manjunath, B.S., Mitra, S.K.: A contour-based approach to multisensor image registration. IEEE Trans. Image Process. 4, 320–334 (1995)

    Article  Google Scholar 

  22. Lu, G., Zhang, D.: A comparative study of Fourier descriptors for shape representation and retrieval. In: Proc. of 5th Asian Conference on Computer Vision (ACCV). Asian Federation of Computer Vision Societies, Melbourne, Australia (2002)

  23. Mackwoth, A., Mokhtarian F.: A theory of multi-scale, curvature-based shape representation for planar curves. IEEE Trans. Pattern Anal. Mach. Intell. 14, 789–805 (1992)

    Article  Google Scholar 

  24. Maintz, J., Viergever, M.: A survey of medical image registration. Med. Image Anal. 2(1), 1–36 (1998). (URL citeseer.ist.psu.edu/maintz98survey.html)

    Google Scholar 

  25. Manjunath, B.S., Fonseca, L.M.G.: Registration techniques for multisensor remotely sensed imagery. Photogramm. Eng. Rem. S. 62, 1049–1056 (1996)

    Google Scholar 

  26. McGuire, M., Stone, H.S., le Moigne, J.: The translation sensitivity of wavelet-based registration. IEEE Trans. Pattern Anal. Mach. Intell. 21, 1074–1081 (1999)

    Article  Google Scholar 

  27. McInerney, T., Terzopoulos, D.: Deformable models in medical images analysis: a survey (1996).

  28. le Moigne, J.: First evaluation of automatic image registration methods. In: Proceedings of the International Geoscience and Remote Sensing Symposium IGARSS98, pp. 315–317. IEEE Geoscience and Remote Sensing Society, Seattle, Washington (1998)

  29. Mokhtarian, F.: Silhouette-based isolated object recognition through curvature scale space. IEEE Trans. Pattern Anal. Mach. Intell. 17, 539–544 (1995)

    Article  Google Scholar 

  30. Mokhtarian, F., Bober, M.: Curvature Scale Space Representation: Theory, Applications, and MPEG-7 Standardization. Kluwer Academic Publishers, Norwell, MA (2003)

    MATH  Google Scholar 

  31. Mubarak Shah, R.K., (ed.): Video Registration. Kluwer, Boston (2003)

  32. Pan, Y.H., Ming, C., Shou-Qian, S.: An image region merging algorithm based on modified fast watershed transform. J. Comput.-Aided Design Comput. Graph., China 17, 546–552 (2005)

    Google Scholar 

  33. Pizer, S.M., Fletcher, P.T., Joshi, S., Thall, A., Chen, J.Z., Fridman, Y., Fritsch, D.S., Gash, A.G., Glotzer, J.M., Jiroutek, M.R., Lu, C., Muller, K.E., Tracton, G., Yushkevich, P., Chaney, E.L.: Deformable m-reps for 3D medical image segmentation. Int. J. Comput. Vision 55(2–3), 85–106 (2003)

    Article  Google Scholar 

  34. Saghri, A., Freeman, H.: Generalized chain codes for planar curves. In: Proceedings of the Fourth International Joint Conference on Pattern Recognition, pp. 701–703. Japan Institute of Electrical and Electronics Engineers, Kyoto, Japan (1978)

  35. Thirion, J.P.: Image matching as a diffusion process: An analogy with Maxwell’s demons. Med. Image Anal. 2, 1–20 (1998)

    Article  Google Scholar 

  36. UCLA: Sift implementation in matlab/c. http://vision.ucla.edu/∼vedaldi/code/sift/sift.html

  37. UCSB: Feature based registration platform. http://nayana.ece.ucsb.edu/registration/

  38. University of Brown: Kimia shape database. http://www.lems.brown.edu/vision/software/index.html

  39. Unser, M., Thevenaz, P., Ruttimann, U.E.: Iterative multiscale registration without landmarks. In: Proceedings of the IEEE International Confernece on Image Processing ICIP95, pp. 228–231. Washington DC (1995)

  40. Vemuri, B.C., Ye, J., Chen, Y., Leonard, C.M.: Image registration via level-set motion: Applications to atlas-based segmentation. Med. Image Anal. 7(1), 1–20 (2003)

    Article  Google Scholar 

  41. Wagner, D.B.: Dynamic programming. http://citeseer.ist.psu.edu/268391.html

  42. Wells, W., Viola, P., Atsumi, H., Nakajima, S., Kikinis, R.: Multi-modal volume registration by maximization of mutual information (1996)

  43. Zak, S.H., Chong, E.K.P.: An Introduction to Optimization. John Wiley, New York (2001)

    MATH  Google Scholar 

  44. Zhang, D., Lu., G.: Review of shape representation and description technique. Pattern Recogn. 37, 1–19 (2004)

    Article  MATH  Google Scholar 

  45. Zheng, Q., Chellappa, R.: A computational vision approach to image registration. IEEE Trans. Image Process. 2, 311–326 (1993)

    Article  Google Scholar 

  46. Zitova, B., Flusser, J.: Image registration methods: A survey. Image Vis. Comput. 21, 977–1000 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Cui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, M., Wonka, P., Razdan, A. et al. A new image registration scheme based on curvature scale space curve matching. Visual Comput 23, 607–618 (2007). https://doi.org/10.1007/s00371-007-0164-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-007-0164-1

Keywords