[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

An efficient and low-error mesh simplification method based on torsion detection

  • original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

To preserve the major characteristics of the simplified model, this study proposes the use of torsion detection to improve the quadric error metric of vertex-pair contraction, and retain the physical features of the models. Besides keeping the physical features of the models, the proposed method also decreases the preprocessing time cost associated with analysis. To verify the conclusion, this research not only presents the effects of simplification and compares them with the vertex-pair contraction, but also employs Metro detection and image comparison to verify the error measurements. The experimental results demonstrate that the proposed method improves the error rate and keeps the precision of the object features efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bernd, H.: A data reduction scheme for triangulated surfaces. Comput Aided Geom Des 11(2):197–214. DOI 10.1016/0167-8396(94)90032-9 (1994)

    Google Scholar 

  2. Chen, B.Y., Nishita, T.: An efficient mesh simplification method with feature detection for unstructured meshes and web graphics. In: Proceedings of IEEE Computer Graphics International 2003, Tokyo, Japan, July 2003, pp 34–41. DOI 10.1109/CGI.2003.1214445 (2003)

  3. Cignoni, P., Rocchini, C., Scopigno, R.: Metro: measuring error on simplified surfaces. Comput Graph Forum 17(2):167–174. DOI 10.1111/1467-8659.00236 (1998)

    Google Scholar 

  4. Garland, M., Heckbert, P.: Surface simplification using quadric error metrics. In: Proceedings of SIGGRAPH 97, Los Angeles, August 1997, pp. 209–216. DOI 10.1145/258734.258849 (1997)

  5. Garland, M.: Quadric-Based Polygonal Surface Simplification. Ph.D. Dissertation, Computer Science Department, Carnegie Mellon University, CMU-CS-99-105, May 1999 (1999)

  6. Garland, M., Willmott, A., Heckbert, P.: Hierarchical face clustering on polygonal surfaces. In: Proceedings of ACM Symposium on Interactive 3D Graphics, March 2001, pp. 49–58. DOI 10.1145/364338.364345 (2001)

  7. Garland, M., Shaffer, E.: A multiphase approach to efficient surface simplification. In: Proceedings of The Conference on Visualization’02. Boston, Massachusetts, October 2002, pp. 117–124 (2002)

  8. Gieng, T., Hamann, B., Joy, K., Schussman, G., Trotts, I.: Constructing hierarchies for triangle meshes. IEEE Trans Visual Comput Graph 4(2):145–161. DOI 10.1109/2945.694956 (1998)

    Google Scholar 

  9. Guéziec, A.: Surface simplification with variable tolerance. In: Second Annual International Symposium on Medical Robotics and Computer Assisted Surgery, Baltimore, MD, November 1995, pp. 132–139 (1995)

  10. Hoppe, H.: Progressive meshes. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, August 1996, pp. 99–108. DOI 10.1145/237170.237216 (1996)

  11. Kho, Y., Garland, M.: User-guided simplification. In: Proceedings of ACM Symposium on Interactive 3D Graphics, Monterey, California, USA, April 2003, pp. 123–126. DOI 10.1145/641480.641504 (2003)

  12. Lindstrom, P.: Out-of-core simplification of large polygonal models. In: Proceedings of ACM SIGGRAPH 2000, New Orleans, July 2000, pp. 259–262. DOI 10.1145/344779.344912 (2000)

  13. Lindstrom, P., Turk, G.: Image-driven simplification. ACM Trans Graph 19(3):204–241. DOI 10.1145/353981.353995 (2000)

    Google Scholar 

  14. Liu YJ, Yuen MMF, Tang K (2003) Manifold-guaranteed out-of-core simplification of large meshes with controlled topological type. Visual Computer 19(8):565–580. DOI 10.1007/s00371-003-0222-2

    Google Scholar 

  15. Lodha, S.K., Roskin, K.M., Renteria, J.C.: Hierarchical topology preserving simplification of terrains. Visual Computer 19(8):493–504. DOI 10.1007/s00371-003-0214-2 (2003)

    Google Scholar 

  16. Luebke, D., Reddy, M., Cohen, J., Varshney, A., Watson, B., Huebner, R.: Level of detail for 3D graphics. Morgan Kaufmann (2003)

  17. Rossignac, J., Borrel, P.: Multi-resolution 3D approximations for rendering complex scenes. In: Geometric Modeling in Computer Graphics, pp. 455–465. Springer, Berlin Heidelberg New York (1993)

  18. Schroeder, W.J., Zarge, J.A., Lorensen, W.E.: Decimation of triangle meshes. ACM SIGGRAPH Computer Graphics 26(2):65–70. DOI 10.1145/142920.134010 (1992)

    Google Scholar 

  19. Spivak, M.: A Comprehensive Introduction to Differential Geometry. Publish or Perish, Inc., Houston (1999)

  20. Yan, J., Shi, P., Zhang, D.: Mesh simplification with hierarchical shape analysis and iterative edge contraction. IEEE Trans Visual Comput Graph 10(2):142–151. DOI 10.1109/TVCG.2004.1260766 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin-Shyan Jong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jong, BS., Tseng, JL. & Yang, WH. An efficient and low-error mesh simplification method based on torsion detection. Visual Comput 22, 56–67 (2006). https://doi.org/10.1007/s00371-005-0356-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-005-0356-5

Keywords

Navigation