[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Mirror MoCap: Automatic and efficient capture of dense 3D facial motion parameters from video

  • original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In this paper, we present an automatic and efficient approach to the capture of dense facial motion parameters, which extends our previous work of 3D reconstruction from mirror-reflected multiview video. To narrow search space and rapidly generate 3D candidate position lists, we apply mirrored-epipolar bands. For automatic tracking, we utilize spatial proximity of facial surfaces and temporal coherence to find the best trajectories and rectify statuses of missing and false tracking. More than 300 markers on a subject’s face are tracked from video at a process speed of 9.2 frames per second (fps) on a regular PC. The estimated 3D facial motion trajectories have been applied to our facial animation system and can be used for facial motion analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Ahlberg J (2002) An active model for facial feature tracking. EURASIP J Appl Signal Process 6:566–571

    Article  Google Scholar 

  2. Arun KS, Huang TS, Blostein SD (1987) Least square fitting of two 3D point sets. IEEE Trans Pattern Anal Mach Intell 9(5):698–700

    Google Scholar 

  3. Basu S, Pentland A (1997) A three-dimensional model of human lip motions trained from video. In: Proceedings of the workshop on IEEE non-rigid and articulated motion, San Juan, Puerto Rico, pp 46–53

  4. Bozic SM (1979) Digital and Kalman filtering. Edward Arnold, London

  5. Blanz V, Vetter T (1999) A morphable model for the synthesis of 3D faces. In: Proceedings of ACM SIGGRAPH’99, pp 353–360

  6. Blanz V, Basso C, Poggio T, Vetter T (2003) Reanimating faces in images and video. Comput Graph Forum 22(2):641–650

    Article  Google Scholar 

  7. Brand M (1999) Voice puppetry. In: Proceedings of SIGGRAPH’99, pp 21–28

  8. Buckley K, Vaddiraju A, Perry R (2000) A new pruning/merging algorithm for MHT multitarget tracking. In: Proceedings of Radar-2000

  9. Castañon DA (1990) Efficient algorithms for finding the k best paths through a trellis. IEEE Trans Aerospace Elect Syst 26(1):405–410

    Article  Google Scholar 

  10. Cohen MM, Massaro DW (1993) Modeling co-articulation in synthetic visual speech. In: Magnenat-Thalmann N, Thalmann D (eds) Models and techniques in computer animation. Springer, Berlin Heidelberg New York, pp 139–156

  11. Davis J, Nehab D, Ramamoorthi R, Rusinkiewicz S (2005) Spacetime stereo: a unifying framework for depth from triangulation. IEEE Trans Pattern Anal Mach Intell 27(1):296–302

    Article  PubMed  Google Scholar 

  12. Ezzat T, Geiger G, Poggio T (2002) Trainable videorealistic speech animation. ACM Trans Graph 21(2):388–398 (also in Proceedings of SIGGRAPH’02)

    Article  Google Scholar 

  13. Goto T, Kshirsagar S, Magnenat-Thalmann N (2001) Automatic face cloning and animation using real-time facial feature tracking and speech acquisition. IEEE Signal Process Mag 18(2):17–25

    Article  Google Scholar 

  14. Guenter B, Grimm C, Wood D, Malvar H, Pighin F (1998) Making faces. In: Proceedings of ACM SIGGRAPH’98, pp 55–66

  15. Haralick RH, Shapiro LG (1992) Computer and robotic vision, vol 1. Addison-Wesley, Reading, MA

  16. Heikkilä J, Silvén O (1997) A four-step camera calibration procedure with implicit image correction. In: Proceedings of the IEEE conference on computer vision and pattern recognition, San Juan, Puerto Rico, pp 1106–1112

  17. Kalberer GA, Gool LV (2001) Face animation based on observed 3D speech dynamics. In: Proceedings of Computer Animation 2001, Seoul, Korea. IEEE Press, New York, pp 18–24

  18. Kuratate T, Yehia H, Vatikiotis-Bateson E (1998) Kinematics-based synthesis of realistic talking faces. In: Proceedings of Auditory-Visual Speech Processing, pp 185–190

  19. Kshirsagar S, Magnenat-Thalmann N (2003) Visyllable based speech animation. Comput Graph Forum 22(2):631–639

    Article  Google Scholar 

  20. Lin I-C, Yeh J-S, Ouhyoung M (2002) Extracting 3D facial animation parameters from multiview video clips. IEEE Comput Graph Appl 22(6):72–80

    Article  Google Scholar 

  21. Pandzic IS, Ostermann J, Millen D (1999) User evaluation: synthetic talking faces for interactive services. Visual Comput 15:330–340

    Article  Google Scholar 

  22. Patterson EC, Litwinowicz PC, Greene N (1991) Facial animation by spatial mapping. In: Proceedings of Computer Animation ‘91. Springer, Berlin Heidelberg New York, pp 31–44

  23. Pighin F, Hecker J, Lischinski D, Szeliski R, Salesin DH (1998) Synthesizing realistic facial expressions from photographs. In: Proceedings of ACM SIGGRAPH ’98, pp 75–84

  24. Pighin F, Szeliski R, Salesin DH (1999) Resynthesizing facial animation through 3D model-based tracking. In: Proceedings of the international conference on computer vison, 1:143–150

  25. Tu P-H, Lin I-C, Yeh J-S, Liang R-H, Ouhyoung M (2004) Surface detail capturing for realistic facial animation. J Comput Sci Technol 19(5):618–625

    Google Scholar 

  26. Weng J, Huang TS, Ahuja N (1989) Motion and structure from two perspective views: algorithms, error analysis, and error estimation. IEEE Trans Pattern Anal Mach Intell 11(5):451–476

    Article  Google Scholar 

  27. Wolf JK (1989) Finding the best set of K paths through a trellis with application to multitarget tracking. IEEE Trans Aerospace Elect Syst 26(1):287–296

    Article  Google Scholar 

  28. Yeasin M, Polat E, Sharma R (2004) A mutiobject tracking framework for interactive mutimedia applications. IEEE Trans Multimedia 6(2):398–405

    Article  Google Scholar 

  29. Zhang L, Snavely N, Curless B, Seitz SM (2004) Spacetime faces: high resolution capture for modeling and animation. ACM Trans Graph 23(2):548–558 (also in Proceedings of SIGGRAPH’04)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I-Chen Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, IC., Ouhyoung, M. Mirror MoCap: Automatic and efficient capture of dense 3D facial motion parameters from video. Visual Comput 21, 355–372 (2005). https://doi.org/10.1007/s00371-005-0291-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-005-0291-5

Keywords

Navigation