Abstract
Polarimetric radar and 2D video disdrometer observations provide new insights into the precipitation microphysical processes and characteristics in the inner rainband of tropical cyclone (TC) Kajiki (2019) in the South China Sea for the first time. The precipitation of Kajiki is dominated by high concentrations and small (< 3 mm) raindrops, which contribute more than 98% to the total precipitation. The average mass-weighted mean diameter and logarithmic normalized intercept are 1.49 mm and 4.47, respectively, indicating a larger mean diameter and a lower concentration compared to the TCs making landfall in eastern China. The ice processes of the inner rainband are dramatically different among different stages. The riming process is dominant during the mature stage, while during the decay stage the aggregation process is dominant. The vertical profiles of the polarimetric radar variables together with ice and liquid water contents in the convective region indicate that the formation of precipitation is dominated by warm-rain processes. Large raindrops collect cloud droplets and other raindrops, causing reflectivity, differential reflectivity, and specific differential phase to increase with decreasing height. That is, accretion and coalescence play a critical role in the formation of heavy rainfall. The melting of different particles generated by the ice process has a great influence on the initial raindrop size distribution (DSD) to further affect the warm-rain processes. The DSD above heavy rain with the effect of graupel has a wider spectral width than the region without the effect of graupel.
摘要
本文利用双偏振雷达和二维视频雨滴谱仪的联合观测,首次分析了南海“剑鱼”热带气旋内雨带降水的微物理特征和过程。热带气旋“剑鱼”降水主要以高浓度的小雨滴(直径小于3 mm)为主,其对降水的总贡献超过98%。雨滴的平均质量加权直径和取对数的标准化截距参数分别为1.49 mm和4.47, 相比登陆华东地区的台风,降水的雨滴直径更高,浓度更低。在“剑鱼”内雨带发展的不同阶段,冰相过程变化显著。在雨带的成熟期,冰相过程中淞附过程占主导,而在雨带的消散期,以丛集过程为主。对流区域的双偏振变量以及冰水和液态水含量的垂直剖面表明降水以暖雨过程为主。大雨滴在下落过程中碰并收集小雨滴和云滴,使得雷达反射率因子、差分反射率因子和差分相移率随高度的递减而增加,即雨水收集云水和碰并过程在形成强降水时发挥重要作用。冰相过程产生的冰相粒子的融化直接影响融化层下方的雨滴谱分布,进而影响其下的暖雨过程。在强降水上方,相比不受霰粒子影响的区域,受霰粒子影响区域的高空雨滴谱的谱宽更宽。
Similar content being viewed by others
References
Andrić, J., M. R. Kumjian, D. S. Zrnic, J. M. Straka, and V. M. Melnikov, 2012: Polarimetric signatures above the melting layer in winter storms: An observational and modeling study. J. Appl. Meteorol. Climatol., 52, 682–700, https://doi.org/10.1175/JAMC-D-12-028.1.
Bao, X. W., L. G. Wu, B. Tang, L. M. Ma, D. Wu, J. Tang, H. J. Chen, and L. Y. Wu, 2019: Variable raindrop size distributions in different rainbands associated with typhoon Fitow (2013). J. Geophys. Res., 124, 12 262–12 281, https://doi.org/10.1029/2019JD030268.
Bao, X. W., and Coauthors, 2020: Distinct raindrop size distributions of convective inner- and outer-rainband rain in typhoon maria (2018). J. Geophys. Res., 125, e2020JD032482, https://doi.org/10.1029/2020JD032482.
Brandes, E. A., G. F. Zhang, and J. Vivekanandan, 2002: Experiments in rainfall estimation with a polarimetric radar in a subtropical environment. J. Appl. Meteorol. Climatol., 41, 674–685, https://doi.org/10.1175/1520-0452(2000)041<0674:EIREWA>2.0.CO;2.
Brandes, E. A., G. F. Zhang, and J. Z. Sun, 2006: On the influence of assumed drop size distribution form on radar-retrieved thunderstorm microphysics. J. Appl. Meteorol. Climatol., 41, 259–268, https://doi.org/10.1175/JAM2335.1.
Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636 pp.
Bringi, V. N., V. Chandrasekar, J. Hubbert, E. Gorgucci, W. L. Randeu, and M. Schoenhuber, 2003: Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J. Atmos. Sci., 60, 354–365, https://doi.org/10.1175/1520-0469(2003)060<0354:RSDIDC>2.0.CO;2.
Brown, B. R., M. M. Bell, and A. J. Frambach, 2016: Validation of simulated hurricane drop size distributions using polarimetric radar. Geophys. Rese. Lett., 43, 910–917, https://doi.org/10.1002/2015GL067278.
Brown, B. R., M. M. Bell, and G. Thompson, 2017: Improvements to the snow melting process in a partially double moment microphysics parameterization. Journal of Advances in Modeling Earth Systems, 9, 1150–1166, https://doi.org/10.1002/2016MS000892.
Carey, L. D., and S. A. Rutledge, 2000: The relationship between precipitation and lightning in tropical island convection: A C-band polarimetric radar study. Mon. Wea. Rev., 128, 2687–2710, https://doi.org/10.1175/1520-0493(2000)128<2687:TRBPAL>2.0.CO;2.
Chang, W. Y., T. C. C. Wang, and P. L. Lin, 2009: Characteristics of the raindrop size distribution and drop shape relation in typhoon systems in the western pacific from the 2d video disdrometer and NCU C-Band polarimetric radar. J. Atmos. Oceanic Technol., 26, 1973–1993, https://doi.org/10.1175/2009JTECHA1236.1.
Chang, W. Y., W. C. Lee, and Y. C. Liou, 2014: The kinematic and microphysical characteristics and associated precipitation efficiency of subtropical convection during SoWMEX/TiMREX. Mon. Wea. Rev., 143, 317–340, https://doi.org/10.1175/MWR-D-14-00081.1.
Chen, F. J., Y. F. Fu, and Y. J. Yang, 2019a: Regional variability of precipitation in tropical cyclones over the western North Pacific revealed by the GPM Dual-frequency precipitation radar and microwave imager. J. Geophys. Res., 124, 11 281–11 296, https://doi.org/10.1029/2019JD031075.
Chen, H., V. Chandrasekar, and R. Cifelli, 2019b: A deep learning approach to dual-polarization radar rainfall estimation. Preprints, 2019 URSI Asia-Pacific Radio Science Conf. (AP-RASC), 1–2, https://doi.org/10.23919/URSIAP-RASC.2019.8738337.
DeMott, C. A., and S. A. Rutledge, 1998: Rutledge, 1998: The vertical structure of TOGA COARE convection. Part I: Radar echo distributions. J. Atmos. Sci., 55, 2730–2747, https://doi.org/10.1175/1520-0469(1998)055<2730:TVSOTC>2.0.CO;2.
Didlake, A. C., and M. R. Kumjian, 2017: Examining polarimetric radar observations of bulk microphysical structures and their relation to vortex kinematics in Hurricane Arthur (2014). Mon. Wea. Rev., 145, 4521–4541, https://doi.org/10.1175/MWR-D-17-0035.1.
Didlake, A. C., and M. R. Kumjian, 2018: Examining storm asymmetries in Hurricane Irma (2017) using polarimetric radar observations. Geophys. Res. Lett., 15, 13 513–13 522, https://doi.org/10.1029/2018GL080739.
Golestani, Y., V. Chandrasekar, and V. N. Bringi, 1989: Intercom-parison of multiparameter radar measurements. Proc. 24th Conf. on Radar Meteorology, Tallahassee, FL, Amer. Meteor. Soc., 309–314.
Guo, Z. Y., Z. P. Sun, J. Guo, F. F. Li, and Z. C. Bu, 2019: A Method for Calibrating Zdr by Using Light Rain Echo in Volume Scan Data. 2019 International Conference on Meteorology Observations (ICMO), Chengdu, China, 1–3, https://doi.org/10.1109/ICMO49322.2019.9025914.
Hence, D. A., and R. A. Houze Jr., 2011: Vertical structure of hurricane eyewalls as seen by the TRMM precipitation radar. J. Atmos. Sci., 68, 1637–1652, https://doi.org/10.1175/2011JAS3578.1.
Hence, D. A., and R. A. Houze Jr., 2012: Vertical structure of tropical cyclone rainbands as seen by the TRMM precipitation radar. J. Atmos. Sci., 69, 2644–2661, https://doi.org/10.1175/JAS-D-11-0323.1.
Houze, R. A., 2010: Clouds in tropical cyclones. Mon. Wea. Rev., 138, 293–344, https://doi.org/10.1175/2009MWR2989.1.
Houze, R. A., F. D. Marks Jr., and R. A. Black, 1992: Dual-aircraft investigation of the inner core of Hurricane Norbert. Part II: Mesoscale distribution of Ice Particles. J. Atmos. Sci., 49, 943–963, https://doi.org/10.1175/1520-0469(1992)049<0943:DAIOTI>2.0.CO;2.
Kalina, E. A., and Coauthors, 2017: The ice water paths of small and large ice species in Hurricanes Arthur (2014) and Irene (2011). J. Appl. Meteorol. Climatol., 56, 1383–1404, https://doi.org/10.1175/JAMC-D-16-0300.1.
Khain, A., B. Lynn, and J. Shpund, 2016: High resolution WRF simulations of Hurricane Irene: Sensitivity to aerosols and choice of microphysical schemes. Atmospheric Research, 167, 129–145, https://doi.org/10.1016/j.atmosees.0015.77.014.
Kumjian, M. R., 2018: Weather radars. Remote Sensing of Clouds and Precipitation, C. Andronache, Ed., Springer, 15–63, https://doi.org/10.1007/978-3-319-72583-3_2.
Kumjian, M. R., and A. V. Ryzhkov, 2010: The impact of evaporation on polarimetric characteristics of rain: Theoretical model and practical implications. J. Appl. Meteorol. Climatol., 49, 1247–1267, https://doi.org/10.1175/2010JAMC2243.1.
Kumjian, M. R., and A. V. Ryzhkov, 2012: The impact of size sorting on the polarimetric radar variables. J. Atmos. Sci., 69, 2042–2060, https://doi.org/10.1175/JAS-D-11-0125.1.
Kumjian, M. R., and O. P. Prat, 2014: The impact of raindrop colli-sional processes on the polarimetric radar variables. J. Atmos. Sci., 71, 3052–3067, https://doi.org/10.1175/JAS-D-13-0357.1.
Leinonen, J., 2014: High-level interface to T-matrix scattering calculations: Architecture, capabilities and limitations. Optics Express, 22, 1655–1660, https://doi.org/10.1364/OE.22.001655.
Li, H. R., D. Moisseev, and A. von Lerber, 2018: How does riming affect dual-polarization radar observations and snow-flake shape? J. Geophys. Res., 123, 6070–6081, https://doi.org/10.1029/2017JD028186.
Li, H. R., J. Tiira, A. von Lerber, and D. Moisseev, 2020a: Towards the connection between snow microphysics and melting layer: Insights from multifrequency and dual-polarization radar observations during BAECC. Atmospheric Chemistry and Physics, 20, 9547–9562, https://doi.org/10.5194/acp-20-9547-2020.
Li, J. N., C. H. Ding, F. Z. Li, and Y. L. Chen, 2020b: Effects of single- and double-moment microphysics schemes on the intensity of super typhoon Sarika (2016). Atmosperric Research, 238, 104894, https://doi.org/10.1016/j.atmosres.2020.104894.
Marshall, J. S., and W. M. K. Palmer, 1948: The distribution of raindrops with size. J. Meteorol., 5, 165–166, https://doi.org/10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2.
May, P. T., J. D. Kepert, and T. D. Keenan, 2008: Polarimetric radar observations of the persistently asymmetric structure of tropical cyclone Ingrid. Mon. Wea. Rev., 136, 616–630, https://doi.org/10.1175/2007MWR2077.1.
Mishchenko, M. I., L. D. Travis, and D. W. Mackowski, 1996: T-matrix computations of light scattering by nonspherical particles: A review. Journal of Quantitative Spectroscopy and Radiative Transfer, 55, 535–575, https://doi.org/10.1016/0022-4073(96)00002-7.
Moisseev, D. N., S. Lautaportti, J. Tyynela, and S. Lim, 2015: Dual-polarization radar signatures in snowstorms: Role of snowflake aggregation. J. Geophys. Res., 120, 12 644–12 655, https://doi.org/10.1002/2015JD023884.
Murphy, J. M., S. J. Haase, R. Padullés, S.-H. Chen, and A. M. Morris, 2019: The potential for discriminating microphys-ical processes in Numerical Weather Forecasts using airborne polarimetric radio occultations. Remote Sensing, 11, 2268, https://doi.org/10.3390/rs11192268.
Park, H. S., A. V. Ryzhkov, D. S. Zrnić, and K.-E. Kim, 2009: The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea. Forecasting, 44, 730–748, https://doi.org/10.1175/0088WAF2222205.1.
Rosenfeld, D., and C. W. Ulbrich, 2003: Cloud microphysical properties, processes, and rainfall estimation opportunities. Radar and Atmospheric Science: A Collection of Essays in Honor of David Atlas, R. M. Wakimoto and R. Srivastava, Eds., American Meteorological Society, 237–258, https://doi.org/10.1007/978-1-878220-36-3_10.
Ryzhkov, A. V., T. J. Schuur, D. W. Burgess, P. L. Heinselman, S. E. Giangrande, and D. S. Zrnic, 2005: The joint polarization experiment: Polarimetric rainfall measurements and hydrometeor classification. Bull. Amer. Meteor. Soc., 86, 809–824, https://doi.org/10.1175/BAMS-86-6-809.
Schrom, R. S., and M. R. Kumjian, 2016: Connecting microphysical processes in Colorado winter storms with vertical profiles of radar observations. J. Appl. Meteorol. Climatol., 55, 1771–1787, https://doi.org/10.1175/JAMC-D-15-0338.1.
Schuur, T., A. Ryzhkov, and P. Heinselman, 2003: Observations and classification of echoes with the polarimetric WSR-88D radar. NOAA/National Severe Storms Laboratory Rep, 46 pp.
Steiner, M., R. A. Houze Jr., and S. E. Yuter, 1995: Climatolo-gical characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteorol. Climatol., 34, 1978–2007, https://doi.org/10.1175/1520-0450(1995)034<1978:CCOTDS>2.0.CO;2.
Sun, Y., H. Xiao, H. L. Yang, L. Feng, H. N. Chen, and L. Luo, 2020: An inverse mapping table method for raindrop size distribution parameters retrieval using X-band dual-polarization radar observations. IEEE Trans. Geosci. Remote Sens., https://doi.org/10.1109/TGRS.2020.2982687.
Testud, J., S. Oury, R. A. Black, P. Amayenc, and X. K. Dou, 2001: The concept of “Normalized” distribution to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. J. Appl. Meteorol. Climatol., 40, 1118–1140, https://doi.org/10.1175/1520-0450(2001)040<1118:TCONDT>2.0.CO;2.
Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteorol., 22, 1764–1775, https://doi.org/10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2.
Vivekanandan, J., G. F. Zhang, and E. Brandes, 2004: Polarimetric radar estimators based on a constrained gamma drop size distribution model. J. Appl. Meteorol. Climatol., 43, 217–230, https://doi.org/10.1175/1520-0450(2004)043<0217:PREBOA>2.0.CO;2.
Vivekanandan, J., D. S. Zrnic, S. M. Ellis, R. Oye, A. V. Ryzhkov, and J. Straka, 1999: Cloud microphysics retrieval using S-band dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 80, 381–388, https://doi.org/10.1175/1520-0477(1999)080<0381:CMRUSB>2.0.CO;2.
Wang, M. J., K. Zhao, M. Xue, G. F. Zhang, S. Liu, L. Wen, and G. Chen, 2016: Precipitation microphysics characteristics of a Typhoon Matmo (2014) rainband after landfall over eastern China based on polarimetric radar observations. J. Geophys. Res., 121, 12 415–12 433, https://doi.org/10.1002/2016JD025307.
Wang, M. J., K. Zhao, W.-C. Lee, and F. Q. Zhang, 2018: Micro-physical and kinematic structure of convective-scale elements in the inner rainband of typhoon Matmo (2014) after landfall. J. Geophys. Res., 123, 6549–6564, https://doi.org/10.1029/2018JD028578.
Wang, M. J., K. Zhao, Y. J. Pan, and M. Xue, 2020: Evaluation of simulated drop size distributions and microphysical processes using polarimetric radar observations for landfalling typhoon Matmo (2014). J. Geophys. Res., 125, e2019JD031527, https://doi.org/10.1029/2019JD031527.
Wang, Y. Q., 2009: How do outer spiral rainbands affect tropical cyclone structure and intensity? J. Atmos. Sci., 66, 1250–1273, https://doi.org/10.1175/2008JAS2737.1.
Wen, J., and Coauthors, 2017: Evolution of microphysical structure of a subtropical squall line observed by a polarimetric radar and a disdrometer during OPACC in eastern China. J. Geophys. Res., 122, 8033–8050, https://doi.org/10.1002/2016JD026346.
Wen, L., and Coauthors, 2018: Drop size distribution characteristics of seven typhoons in China. J. Geophys. Res., 123, 6529–6548, https://doi.org/10.1029/2017JD027950.
Willoughby, H. E., 1989: Temporal changes of the primary circulation in tropical cyclones. J. Atmos. Sci., 47, 242–264, https://doi.org/10.1175/1520-0469(1990)047<0242:TCOTPC>2.0.CO;2.
Wu, C., L. P. Liu, M. Wei, B. Z. Xi, and M. H. Yu, 2018a: Statistics-based optimization of the polarimetric radar hydrometeor classification algorithm and its application for a squall line in South China. Adv. Atmos. Sci., 31, 296–316, https://doi.org/10.1007/s00376-017-6241-0.
Wu, D., and Coauthors, 2018b: Kinematics and microphysics of convection in the outer rainband of typhoon Nida (2016) revealed by polarimetric radar. Mon. Wea. Rev., 146, 2147–2159, https://doi.org/10.1175/MWR-D-17-0320.1.
Wu, Z. H., Y. Zhang, L. F. Zhang, H. C. Lei, Y. Q. Xie, L. Wen, and J. F. Yang, 2019: Characteristics of summer season raindrop size distribution in Three Typical Regions of Western Pacific. J. Geophys. Res., 124, 4054–4073, https://doi.org/10.1029/2018JD029194.
Ying, M., W. Zhang, H. Yu, X. Q. Lu, J. X. Feng, Y. X. Fan, Y. T. Zhu, and D. Q. Chen, 2014: An overview of the china meteorological administration tropical cyclone database. J. Atmos. Oceanic Technol., 31, 287–301, https://doi.org/10.1175/JTECH-D-12-00119.1.
Yu, C.-K., and C.-L. Tsai, 2012: Structural and surface features of arc-shaped radar echoes along an outer tropical cyclone rainband. J. Atmos. Sci., 70, 56–72, https://doi.org/10.1175/JAS-D-12-090.1.
Yuter, S. E., and R. A. Houze Jr., 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part III: Vertical mass transport, mass divergence, and synthesis. Mon. Wea. Rev., 123, 1964–1983, https://doi.org/10.1175/1520-0493(1995)123<1964:TDKAME>2.0.CO;2.
Zhang, G., J. Vivekanandan, and E. Brandes, 2001: A method for estimating rain rate and drop size distribution from polarimet-ric radar measurements. IEEE Trans. Geosci. Remote Sens., 39, 830–841, https://doi.org/10.1109/36.917906.
Zhao, K., and Coauthors, 2019: Recent progress in dual-polarization radar research and applications in China. Adv. Atmos. Sci., 36, 961–974, https://doi.org/10.1007/s00376-019-9057-2.
Acknowledgements
This work was primarily supported by the National Key Research and Development Program of China (Grant No. 2018YFC1507304) and the National Natural Science Foundation of China (Grant Nos. 42075080, 41975066 and 41865009). Datasets for this research are available at https://doi.org/10.5281/zenodo.4279343. We thank http://weather.uwyo.edu/upperair/np.html for providing the sounding data. We thank Jussi LEINONEN for his software: PyTMatrix (https://github.com/jleinonen/pytmatrix). Thanks also to the editors and reviewers for their critical and constructive comments.
Author information
Authors and Affiliations
Corresponding author
Additional information
Article Highlights
• First report on precipitation microphysical characteristics and processes of a tropical cyclone over the South China Sea.
• The riming (aggregation) process is dominant during the mature (decay) stage of the inner rainband.
• The formation of precipitation is dominated by warm-rain processes, while the melting of different particles generated by the ice processes has a great influence on the initial raindrop size distribution.
Rights and permissions
About this article
Cite this article
Zheng, H., Zhang, Y., Zhang, L. et al. Precipitation Microphysical Processes in the Inner Rainband of Tropical Cyclone Kajiki (2019) over the South China Sea Revealed by Polarimetric Radar. Adv. Atmos. Sci. 38, 65–80 (2021). https://doi.org/10.1007/s00376-020-0179-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00376-020-0179-3