[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

The Flexible Global Ocean-Atmosphere-Land system model, Spectral Version 2: FGOALS-s2

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The Flexible Global Ocean-Atmosphere-Land System model, Spectral Version 2 (FGOALS-s2) was used to simulate realistic climates and to study anthropogenic influences on climate change. Specifically, the FGOALS-s2 was integrated with Coupled Model Intercomparison Project Phase 5 (CMIP5) to conduct coordinated experiments that will provide valuable scientific information to climate research communities. The performances of FGOALS-s2 were assessed in simulating major climate phenomena, and documented both the strengths and weaknesses of the model. The results indicate that FGOALS-s2 successfully overcomes climate drift, and realistically models global and regional climate characteristics, including SST, precipitation, and atmospheric circulation. In particular, the model accurately captures annual and semi-annual SST cycles in the equatorial Pacific Ocean, and the main characteristic features of the Asian summer monsoon, which include a low-level southwestern jet and five monsoon rainfall centers. The simulated climate variability was further examined in terms of teleconnections, leading modes of global SST (namely, ENSO), Pacific Decadal Oscillations (PDO), and changes in 19th–20th century climate. The analysis demonstrates that FGOALS-s2 realistically simulates extra-tropical teleconnection patterns of large-scale climate, and irregular ENSO periods. The model gives fairly reasonable reconstructions of spatial patterns of PDO and global monsoon changes in the 20th century. However, because the indirect effects of aerosols are not included in the model, the simulated global temperature change during the period 1850–2005 is greater than the observed warming, by 0.6°C. Some other shortcomings of the model are also noted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler, R. F., and Coauthors, 2003: The version 2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). Journal of Hydrometeorology, 4, 1147–1167.

    Article  Google Scholar 

  • Bao, Q., G. X. Wu, Y. M. Liu, J. Yang, Z. Z. Wang, and T. J. Zhou, 2010: An introduction to the coupled model FGOALS1.1-s and its performance in East Asia. Adv. Atmos. Sci., 27, 1131–1142, doi: 10.1007/s00376-010-9177-1.

    Article  Google Scholar 

  • Briegleb, B. P., C. M. Bitz, E. C. Hunke, W. H. Lipscomb, M. M. Holland, J. L. Schramm, and R. E. Moritz, 2004: Scientific description of the sea ice component in the community climate system model, version three. NCAR Tech. Note NCAR/TN-463+STR, 70pp.

    Google Scholar 

  • Brinkop, S., and E. Roeckner, 1995: Sensitivity of a general circulation model to parameterizations of cloud-turbulence interactions in the atmospheric boundary layer. Tellus A, 47, 197–220.

    Article  Google Scholar 

  • Brohan, P., J. J. Kennedy, I. Harris, S. F. B. Tett, and P. D. Jones, 2006: Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850. J. Geophys. Res., 111, doi: 10.1029/2005JD006548.

  • Canuto, V. M., A. Howard, Y. Cheng, and M. S. Dubovikov, 2001: Ocean turbulence. Part I: Onepoint closure model-momentum and heat vertical diffusivities. J. Phys. Oceanogr., 31, 1413–1426.

    Article  Google Scholar 

  • Chen, M., P. Xie, J. E. Janowiak, and P. A. Arkin, 2002: Global land precipitation: A 50-yr monthly analysis based on gauge observations. Journal of Hydrometeorology, 3, 249–266.

    Article  Google Scholar 

  • Collins, W. D., and Coauthors, 2006: The community climate system model version 3 (CCSM3). J. Climate, 19, 2122–2143.

    Article  Google Scholar 

  • Edwards, J. M., and A. Slingo, 1996: Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model. Quart. J. Roy. Meteor. Soc., 122, 689–719.

    Article  Google Scholar 

  • Friedlingstein, P., and Coauthors, 2006: Climate-Carbon cycle feedback analysis: Results from the C4MIP model intercomparison. J. Climate, 19, 3337–3353.

    Article  Google Scholar 

  • Li, J. D., Z. Sun., Y. M. Liu, J. N. Li, W.-C. Wang, and G. X. Wu, 2012: A study on sulfate optical properties and direct radiative forcing using LASG-IAP general circulation model. Adv. Atmos. Sci., 29(6), 1185–1199, doi: 10.1007/s00376-012-1257-y.

    Article  Google Scholar 

  • Li, Y. C., and Y. F. Xu, 2012: Uptake and storage of anthropogenic CO2 in the Pacific Ocean estimated using two modeling approaches. Adv. Atmos. Sci., 29(4), doi: 10.1007/s00376-012-1170-4.

    Google Scholar 

  • Lin, P. F., H. L. Liu, and X. H. Zhang, 2007: Sensitivity of the upper ocean temperature and circulation in the equatorial Pacific to solar radiation penetration due to phytoplankton. Adv. Atmos. Sci., 24, 765–780, doi: 10.1007/s00376-007-0765-7.

    Article  Google Scholar 

  • Lin, P. F., Y. Q. Yu, and H. L. Liu, 2013: Long-term stability and oceanic mean state simulated by the coupled model FGOALS-s2. Adv. Atmos. Sci., 30, 175–192, doi: 10.1007/s00376-012-2042-7.

    Article  Google Scholar 

  • Liu, H. L., Y. Q. Yu, W. Li, and X. H. Zhang, 2004: Manual for LASG/IAP climate system ocean model (LICOM1.0). Science Press, Beijing, 128pp. (in Chinese)

    Google Scholar 

  • Liu, Y. M., J. Hu, B. He, Q. Bao, A. M., Duan and G. X. Wu, 2013: Seasonal evolution of the subtropical anticyclones in a climate system model FGOALS-s2. Adv. Atmos. Sci., doi: 10.1007/s00376-012-2154-0.

    Google Scholar 

  • Lumpkin, R., and K. Speer, 2007: Global ocean meridional overturning. J. Phys. Oceanogr., 37, 2550–2562.

    Article  Google Scholar 

  • Meehl, G. A., and T. F. Stocker, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon, et al., Eds., Cambridge University Press, United Kingdom and New York, 996pp.

    Google Scholar 

  • Mitchell, T. D., and P. Jones, 2005: An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol. 25, 693–712.

    Article  Google Scholar 

  • Oleson, K. W., and Coauthors, 2004: Technical description of the community land model (CLM). NCAR/TN-461+STR, 173pp.

    Google Scholar 

  • Rayner, N. A., and Coauthors, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 37pp.

  • Song, X. L., 2005: The evaluation analysis of two kinds of mass-flux cumulus parameterization in climate simulation. Institute of Atmospheric Physics, Chinese Academy of Sciences, Ph.D. dissertation, 158pp. (in Chinese)

    Google Scholar 

  • Sun, Z., 2011: Improving transmission calculations for Edwards-Slingo radiation scheme using a correlated k-distribution method. Quart. J. Roy. Meteor. Soc., 137, 2138–2148.

    Article  Google Scholar 

  • Sun, Z. A., and L. Rikus, 1999a: Improved application of exponential sum fitting transmissions to inhomogeneous atmosphere. J. Geophys. Res., 104, 6291–6303.

    Article  Google Scholar 

  • Sun, Z. A., and L. Rikus, 1999b: Parametrization of effective sizes of cirrus-cloud particles and its verification against observations. Quart. J. Roy. Meteor. Soc., 125, 3037–3055.

    Article  Google Scholar 

  • Taylor, K. E., R. J. Stouffer, and G. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485–498.

    Article  Google Scholar 

  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 1779–1800.

    Article  Google Scholar 

  • IPCC, 2007: Observations: Surface and atmospheric climate change. Climate Change 2007: The Physical Science Basis, S. Solomon, et al., Eds., Cambridge University Press, United Kingdom and New York, 996pp.

    Google Scholar 

  • Wallace, J. M. and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784–812.

    Article  Google Scholar 

  • Wang, B., and Q. H. Ding, 2006: Changes in global monsoon precipitation over the past 56 years. Geophys. Res. Lett., 33, doi: L06711.06711-L06711.06714.

  • Wang, Z. Z., G. X. Wu, P. Liu, and T. W. Wu, 2005: The development of GOALS/LASG AGCM and its global climatological features in climate simulation I: Influence of horizontal resolution. Journal of Tropical Meteorology, 21, 225–237. (in Chinese)

    Google Scholar 

  • Wu, F. H., H. L. Liu, W. Li, and X. H. Zhang, 2005: Effects of adjusting vertical resolution on the eastern equatorial Pacific cold tongue. Acta Oceanologica Sinica, 24, 16–27. (in Chinese)

    Google Scholar 

  • Xiao, C., 2006: Adoption of a two-step shape-preserving advection scheme in an OGCM and its coupled experiment. Ph.D. dissertation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 89pp. (in Chinese)

    Google Scholar 

  • Xie, P. P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 2539–2558.

    Article  Google Scholar 

  • Yang, J., B. Wang and B. Wang, 2008: Anti-correlated intensity change of the quasi-biweekly and 30°C50-day oscillations over the South China Sea. Geophys. Res. Lett., 35, L16702, doi: 10.1029/2008GL034449.

    Article  Google Scholar 

  • Yang, J., B. Wang, B. Wang, and Q. Bao, 2010: Biweekly and 21–30 day variabilities of the subtropical East Asian monsoon over the Lower reach of Yangtze River Basin. J. Climate, 23, 1146–1159.

    Article  Google Scholar 

  • Yang, J., Q. Bao, X. C. Wang, and T. J. Zhou. 2012: The tropical intraseasonal oscillation in SAMIL coupled and uncoupled general circulation models. Adv. Atmos. Sci., doi: 10.1007/s00376-011-1087-3.

    Google Scholar 

  • Yu, R. C., and T. J. Zhou, 2004: Impacts of winter-NAO on March cooling trends over subtropical Eurasia continent in the recent half century. Geophys. Res. Lett., 31, doi: 10.1029/2004GL019814.

  • Yu, Y. Q., W. P. Zheng, B. Wang, H. L. Liu, and J. P. Liu, 2011: Versions g1.0 and g1.1 of the LASG/IAP flexible global ocean-atmosphere-land system model. Adv. Atmos. Sci., 28, 99–117, doi: 10.1007/s00376-010-9112-5.

    Article  Google Scholar 

  • Zeng, N., H. F. Qian, E. Munoz, and R. Iacono, 2004: How strong is carbon cycle-climate feedback under global warming. Geophys. Res. Lett., 31, doi: 10.1029/2004GL020904.

    Google Scholar 

  • Zhang, X. H., and X. Z. Liang, 1989: A numerical world ocean general circulation model. Adv. Atmos. Sci., 6, 44–61.

    Article  Google Scholar 

  • Zhang, X. H., G. Y. Shi, H. Liu, and Y. Q. Yu, 2000: IAP Global Ocean-Atmosphere-Land System Model. Science Press, Beijing, 252pp. (in Chinese)

    Google Scholar 

  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10, 1004–1020.

    Article  Google Scholar 

  • Zhou, T. J., R. C. Yu, Z. Z. Wang, and T. W. Wu, 2005: Atmospheric Circulation Global Model (SAMIL) and the Coupled Model (FGOALS-s). Vol. 4, China Meteorological Press, 288pp. (in Chinese)

    Google Scholar 

  • Zhou, T. J., X. H. Zhang, Y. Q. Yu, R. C. Yu, and S. W. Wang, 2000: The North Atlantic oscillation simulated by versions 2 and 4 of IAP/LASG GOALS Model. Adv. Atmos. Sci., 17, 601–616.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianjun Zhou  (周天军).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bao, Q., Lin, P., Zhou, T. et al. The Flexible Global Ocean-Atmosphere-Land system model, Spectral Version 2: FGOALS-s2. Adv. Atmos. Sci. 30, 561–576 (2013). https://doi.org/10.1007/s00376-012-2113-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-012-2113-9

Key words

Navigation