[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Efficient mesh-free modeling of liquid droplet impact on elastic surfaces

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

The impact of liquid droplets on flexible substrates is a common phenomenon in applications, such as plant leaves repelling raindrops and piezoelectric sensors harvest droplet energy. It involves the coupling of free surface flow, elasticity and surface/interface with large deformations that are difficult to simulate using traditional numerical methods. In this study, a novel fluid–flexible structure interaction model is established based on the smoothed particle hydrodynamics (SPH) method. The droplet is described by a weakly compressible (WC) SPH formulation, and the flexible substrate is described by the total Lagrangian (TL) SPH formulation and Mindlin–Reissner shell theory using one layer of particles. Surface tension and wetting effects are simulated by an additional negative pressure term that creates attractive forces among fluid particles, and appropriate kernel functions are selected to eliminate stress instability owing to droplet spreading and retraction. The proposed model is applied to simulate the dynamic process of the droplet impact on hydrophilic and super-hydrophobic cantilever thin plates. The interaction of the droplet and thin plate is investigated under various conditions including stiffness, Weber number, and wettability. Predicted phenomena such as the springboard effect, droplet morphology, plate deformation, and vibration are consistent with experimental observations. The modeling strategy using the TL-SPH shell formulation and free surface WC-SPH formulation showed improved computational efficiency for 3D simulations. Nonlinear behaviors such as droplet spreading, splashing, and large deflection of the substrate, can be effectively reproduced, which demonstrates the potential of SPH in simulating such problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Mangili S, Antonini C, Marengo M, Amirfazli A (2012) Understanding the drop impact phenomenon on soft PDMS substrates. Soft Matter 8(39):10045–10054

    Google Scholar 

  2. Howland CJ, Antkowiak A, Castrejón-Pita JR, Howison SD, Oliver JM, Style RW, Castrejón-Pita AA (2016) It’s harder to splash on soft solids. Phys Rev Lett 117(18):184502

    Google Scholar 

  3. Chen N, Chen H, Amirfazli A (2017) Drop impact onto a thin film: Miscibility effect. Phys Fluids 29(9):092106

    Google Scholar 

  4. Ha NS, Truong QT, Goo NS, Park HC (2013) Relationship between wingbeat frequency and resonant frequency of the wing in insects. Bioinspir Biomim 8:046008

    Google Scholar 

  5. Gart S, Mates JE, Megaridis CM et al (2015) Droplet impacting a cantilever: A leaf-raindrop system[J]. Phys Rev Appl 3(4):044019

    Google Scholar 

  6. Helseth LE, Wen HZ (2017) Evaluation of the energy generation potential of rain cells. Energy 119:472–482

    Google Scholar 

  7. Dong X, Zhu H, Yang X (2015) Characterization of droplet impact and deposit formation on leaf surfaces. Pest Manag Sci 71(2):302–308

    Google Scholar 

  8. Weisensee PB, Ma J, Shin YH et al (2017) Droplet impact on vibrating superhydrophobic surfaces. Phys Rev Fluids 2(10):103601

    Google Scholar 

  9. Aria AI, Gharib M (2014) Physicochemical characteristics and droplet impact dynamics of superhydrophobic carbon nanotube arrays. Langmuir 30(23):6780–6790

    Google Scholar 

  10. Bergeron V, Bonn D, Martin JY, Vovelle L (2000) Controlling droplet deposition with polymer additives. Nature 405(6788):772–775

    Google Scholar 

  11. Vasileiou T, Gerber J, Prautzsch J et al (2016) Superhydrophobicity enhancement through substrate flexibility. Proc Natl Acad Sci 113(47):13307–13312

    Google Scholar 

  12. Huang X, Dong X, Li J et al (2019) Droplet impact induced large deflection of a cantilever. Phys Fluids 31(6):062106

    Google Scholar 

  13. Kim JH, Rothstein JP, Shang JK (2018) Dynamics of a flexible superhydrophobic surface during a drop impact. Phys Fluids 30:072102

    Google Scholar 

  14. Chen H, Zhang X, Garcia BB et al (2019) Drop impact onto a cantilever beam: behavior of the lamella and force measurement. Interfac Phenomena Heat Transfer 7:1

    Google Scholar 

  15. Dong X, Huang X, Liu J (2019) Modeling and simulation of droplet impact on elastic beams based on SPH. Eur J Mech-A/Solids 75:237–257

    MathSciNet  MATH  Google Scholar 

  16. Guo Y, Wei L, Liang G et al (2014) Simulation of droplet impact on liquid film with CLSVOF. Int Commun Heat Mass Transfer 53:26–33

    Google Scholar 

  17. Tanguy S, Berlemont A (2005) Application of a level set method for simulation of droplet collisions. Int J Multiph Flow 31(9):1015–1035

    MATH  Google Scholar 

  18. Muradoglu M, Tasoglu S (2010) A front-tracking method for computational modeling of impact and spreading of viscous droplets on solid walls. Comput Fluids 39(4):615–625

    MathSciNet  MATH  Google Scholar 

  19. Antoci C, Gallati M, Sibilla S (2007) Numerical simulation of fluid–structure interaction by SPH. Comput Struct 85(11–14):879–890

    Google Scholar 

  20. Suchde P, Kuhnert J (2019) A meshfree generalized finite difference method for surface PDEs. Comput Math Appl 78(8):2789–2805

    MathSciNet  MATH  Google Scholar 

  21. Fu ZJ, Xie ZY, Ji SY et al (2020) Meshless generalized finite difference method for water wave interactions with multiple-bottom-seated-cylinder-array structures. Ocean Eng 195:106736

    Google Scholar 

  22. Suchde P, Kuhnert J, Tiwari S (2018) On meshfree GFDM solvers for the incompressible Navier–Stokes equations. Comput Fluids 165:1–12

    MathSciNet  MATH  Google Scholar 

  23. Ma T, Chen D, Sun H et al (2021) Dynamic behavior of metal droplet impact on dry smooth wall: SPH simulation and splash criteria. Eur J Mech-B/Fluids 88:123–134

    MathSciNet  MATH  Google Scholar 

  24. Wang L, Zhang R, Zhang X et al (2017) Numerical simulation of droplet impact on textured surfaces in a hybrid state. Microfluid Nanofluid 21(4):61

    Google Scholar 

  25. Gao S, Liao Q, Liu W et al (2018) Nanodroplets impact on rough surfaces: a simulation and theoretical study. Langmuir 34(20):5910–5917

    Google Scholar 

  26. Liu Q, Sun Z, Sun Y et al (2022) Symmetric boundary condition for the MPS method with surface tension model. Comput Fluids 235:105283

    MathSciNet  MATH  Google Scholar 

  27. Liu MB, Zhang ZL, Feng DL (2017) A density-adaptive SPH method with kernel gradient correction for modeling explosive welding. Comput Mech 60(3):513–529

    MathSciNet  MATH  Google Scholar 

  28. Chen JK, Beraun JE, Jih CJ (1999) Completeness of corrective smoothed particle method for linear elastodynamics. Comput Mech 24(4):273–285

    MATH  Google Scholar 

  29. Huang C, Lei JM, Liu MB et al (2015) A kernel gradient free (KGF) SPH method. Int J Numer Meth Fluids 78(11):691–707

    MathSciNet  Google Scholar 

  30. Wang L, Xu F, Yang Y (2021) An improved total Lagrangian SPH method for modeling solid deformation and damage. Eng Anal Boundary Elem 133:286–302

    MathSciNet  MATH  Google Scholar 

  31. Liu GR, Liu MB (2003) Smoothed particle hydrodynamics: a meshfree particle method. World Scientific, Singapore

    MATH  Google Scholar 

  32. Yang Q, Jones V, McCue L (2012) Free-surface flow interactions with deformable structures using an SPH–FEM model. Ocean Eng 55:136–147

    Google Scholar 

  33. Liu MB, Shao J, Li H (2013) Numerical simulation of hydro-elastic problems with smoothed particle hydrodynamics method. J Hydrodyn 25(5):673–682

    Google Scholar 

  34. Rafiee A, Thiagarajan KP (2009) An SPH projection method for simulating fluid-hypoelastic structure interaction. Comput Methods Appl Mech Eng 198(33–36):2785–2795

    MATH  Google Scholar 

  35. Abbas K, Hitoshi G, Hosein F et al (2018) An enhanced ISPH-SPH coupled method for simulation of incompressible fluid-elastic structure interactions. Comput Phys Commun 232:139–164

    MathSciNet  MATH  Google Scholar 

  36. Zhang A, Ming F, Cao X (2014) Total Lagrangian particle method for the large-deformation analyses of solids and curved shells. Acta Mech 225(1):253–275

    MathSciNet  MATH  Google Scholar 

  37. Yang XF, Peng SL, Liu MB (2014) A new kernel function for SPH with applications to free surface flows. Appl Math Model 38(15–16):3822–3833

    MathSciNet  MATH  Google Scholar 

  38. Becker M, Teschner M. Weakly compressible SPH for free surface flows[C]//Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation. 2007: 209-217.

  39. Monaghan JJ (1994) Simulating free surface flows with SPH. J Comput Phys 110(2):399–406

    MATH  Google Scholar 

  40. Antuono M, Colagrossi A, Marrone S (2012) Numerical diffusive terms in weakly-compressible SPH schemes. Comput Phys Commun 183(12):2570–2580

    MathSciNet  MATH  Google Scholar 

  41. Shadloo MS, Zainali A, Yildiz M et al (2012) A robust weakly compressible SPH method and its comparison with an incompressible SPH. Int J Numer Meth Eng 89(8):939–956

    MathSciNet  MATH  Google Scholar 

  42. Hughes TJR, Liu WK (1981) Nonlinear finite element analysis of shells: Part I. Three-dimensional shells. Comput Methods Appl Mech Eng 26(3):331–362

    MATH  Google Scholar 

  43. Hughes TJR, Liu WK (1981) Nonlinear finite element analysis of shells-part II. two-dimensional shells. Comput Methods Appl. Mech. Eng. 27(2):167–181

    MATH  Google Scholar 

  44. Brackbill JU, Kothe DB, Zemach C (1992) A continuum method for modeling surface tension. J Comput Phys 100(2):335–354

    MathSciNet  MATH  Google Scholar 

  45. Breinlinger T, Polfer P, Hashibon A et al (2013) Surface tension and wetting effects with smoothed particle hydrodynamics. J Comput Phys 243:14–27

    MATH  Google Scholar 

  46. Morris JP (2000) Simulating surface tension with smoothed particle hydrodynamics. Int J Numer Meth Fluids 33(3):333–353

    MATH  Google Scholar 

  47. Zhang M, Zhang S, Zhang H et al (2012) Simulation of surface-tension-driven interfacial flow with smoothed particle hydrodynamics method. Comput Fluids 59:61–71

    MathSciNet  MATH  Google Scholar 

  48. Li L, Shen L, Nguyen GD et al (2018) A smoothed particle hydrodynamics framework for modelling multiphase interactions at meso-scale. Comput Mech 62(5):1071–1085

    MathSciNet  MATH  Google Scholar 

  49. Swegle JW, Hicks DL, Attaway SW (1995) Smoothed particle hydrodynamics stability analysis. J Comput Phys 116(1):123–134

    MathSciNet  MATH  Google Scholar 

  50. Monaghan JJ (2000) SPH without a tensile instability. J Comput Phys 159(2):290–311

    MATH  Google Scholar 

  51. Gray JP, Monaghan JJ, Swift RP (2001) SPH elastic dynamics. Comput Methods Appl Mech Eng 190(49–50):6641–6662

    MATH  Google Scholar 

  52. Randles PW, Libersky LD (1996) Smoothed particle hydrodynamics: some recent improvements and applications. Comput Methods Appl Mech Eng 139(1–4):375–408

    MathSciNet  MATH  Google Scholar 

  53. Swegle J W, Attaway S W, Heinstein M W, et al. An analysis of smoothed particle hydrodynamics[R]. Sandia National Labs., Albuquerque, NM (United States), 1994.

  54. Balsara DS (1995) Von Neumann stability analysis of smoothed particle hydrodynamics—Suggestions for optimal algorithms. J Comput Phys 121(2):357–372

    MathSciNet  MATH  Google Scholar 

  55. Belytschko T, Guo Y, Kam Liu W et al (2000) A unified stability analysis of meshless particle methods. Int J Numer Meth Eng 48(9):1359–1400

    MathSciNet  MATH  Google Scholar 

  56. Rabczuk T, Belytschko T, Xiao SP (2004) Stable particle methods based on Lagrangian kernels. Comput Methods Appl Mech Eng 193(12–14):1035–1063

    MathSciNet  MATH  Google Scholar 

  57. Maurel B, Combescure A (2008) An SPH shell formulation for plasticity and fracture analysis in explicit dynamics. Int J Numer Meth Eng 76:949–971

    MathSciNet  MATH  Google Scholar 

  58. Ming FR, Zhang A, Cao XY (2013) A robust shell element in meshfree SPH method. Acta Mech Sin 29(2):241–255

    MathSciNet  MATH  Google Scholar 

  59. Lin J, Naceur H, Coutellier D et al (2014) Efficient mesh-less SPH method for the numerical modeling of thick shell structures undergoing large deformations. Int J Non-Linear Mech 65:1–13

    Google Scholar 

  60. Yang X, Liu M, Peng S (2014) Smoothed particle hydrodynamics modeling of viscous liquid drop without tensile instability. Comput Fluids 92:199–208

    MathSciNet  MATH  Google Scholar 

  61. Yang XF, Liu MB (2012) An improvement for stress instability in smoothed particle hydrodynamics (in Chinese). Acta Phys Sin 61:224701

    Google Scholar 

  62. Liu MB, Liu GR, Lam KY (2003) Constructing smoothing functions in smoothed particle hydrodynamics with applications. J Comput Appl Math 155:263–284

    MathSciNet  MATH  Google Scholar 

  63. Tartakovsky A, Meakin P (2005) Modeling of surface tension and contact angles with smoothed particle hydrodynamics. Phys Rev E 72:026301

    Google Scholar 

  64. Liu MB, Chang JZ, Liu HT et al (2011) Modeling of contact angles and wetting effects with particle methods. Int J Comput Methods 8(04):637–651

    Google Scholar 

  65. Lin J. Nonlinear transient analysis of isotropic and composite shell structures under dynamic loading by SPH method[D]. Université de Technologie de Compiègne, 2014.

  66. Upadhyay G, Kumar V, Bhardwaj R (2021) Bouncing droplets on an elastic, superhydrophobic cantilever beam. Phys Fluids 33(4):042104

    Google Scholar 

  67. Clanet C, Béguin C, Richard D et al (2004) Maximal deformation of an impacting drop. J Fluid Mech 517:199–208

    MATH  Google Scholar 

  68. Soto D, De Lariviere AB, Boutillon X et al (2014) The force of impacting rain. Soft Matter 10(27):4929–4934

    Google Scholar 

  69. Nugent S, Posch HA (2000) Liquid drops and surface tension with smoothed particle applied mechanics. Phys Rev E 62(4):4968

    Google Scholar 

  70. Richard D, Clanet C, Quéré D (2002) Contact time of a bouncing drop. Nature 417(6891):811–811

    Google Scholar 

Download references

Funding

This work was funded by Natural Science Foundation of Shandong Province (Grant no. ZR2021MA039) by Xiangwei Dong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanxin Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (AVI 27059 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, X., Hao, G. & Liu, Y. Efficient mesh-free modeling of liquid droplet impact on elastic surfaces. Engineering with Computers 39, 3441–3471 (2023). https://doi.org/10.1007/s00366-022-01762-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-022-01762-y

Keywords

Navigation