[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A probabilistic simplified sine cosine crow search algorithm for global optimization problems

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Crow Search Algorithm (CSA) is a novel meta-heuristic optimizer that is based on the intelligent behavior of crows. There is rather simple with two adjustable parameters only, which in turn makes it very attractive for applications in different engineering areas. To compensate for the blindness of the location update perceived in CSA when being tracked, this paper introduces a probability simplified sine cosine algorithm to form a new hybrid algorithm called PSCCSA (Probabilistic Simplified Sine Cosine Crow Search Algorithm). In 16 well-known standard test functions, the proposed algorithm was compared with 5 meta-heuristic algorithms for evaluating the effectiveness of the algorithms (Crow Search Algorithm, standard Sine Cosine Algorithm, Probability Simplified Sine Cosine Algorithm, Multi-Verse Optimizer and Particle Swarm Optimization). In addition, PSCCSA has also been used to solve four classic engineering problems (pressure vessel design, speed reducer design, welded beam design and tension/compression spring design problem). The results show that the proposed algorithm is feasible and effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82

    Article  Google Scholar 

  2. Yang X-S, Gandomi AH (2012) Bat algorithm: a novel approach for global engineering optimization. Eng Comput 29(5):464–483

    Article  Google Scholar 

  3. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69(3):46–61

    Article  Google Scholar 

  4. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95(5):51–67

    Article  Google Scholar 

  5. Arora S, Singh S (2018) Butterfly optimization algorithm: a novel approach for global optimization. Soft Comput 32:715–734

    Google Scholar 

  6. Heidari AA, Mirjalili S, Faris H et al (2019) Harris hawks optimization: algorithm and applications. Futur Gener Comput Syst 97(8):849–872

    Article  Google Scholar 

  7. Askarzadeh A (2016) A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput Struct 169:1–12

    Article  Google Scholar 

  8. Mousavi SF, Vaziri HR, Karami H et al (2018) Optimizing reservoirs exploitation with a new crow search algorithm based on a multi-criteria decision-making model. J Water Soil Sci 22(1):279–290

    Article  Google Scholar 

  9. Khandani MK, Askarzadeh A (2020) Optimal MV/LV transformer allocation in distribution network for power losses reduction and cost minimization: a new multi-objective framework. Int Trans Electr Energy Syst 30(6):1–18

    Google Scholar 

  10. Oliva D, Hinojosa S, Cuevas E et al (2017) Cross entropy based thresholding for magnetic resonance brain images using crow search algorithm. Expert Syst Appl 79:164–180

    Article  Google Scholar 

  11. Patil BH, Patil PM (2018) Crow search algorithm with discrete wavelet transform to aid Mumford Shah inpainting model. Evol Intel 11:73–87

    Article  Google Scholar 

  12. Satpathy A, Addya S K, Turuk A K et al (2017) A resource aware VM placement strategy in cloud data centers based on crow search algorithm[. In: International Conference on Advanced Computing and Communication Systems, Los Angles, USA

  13. Gupta D, Sundaram S, Rodrigues JJPC et al (2019) An improved fault detection crow search algorithm for wireless sensor network. Int J Commun Syst 5:1–12

    Google Scholar 

  14. Liu XJ, He YZ et al (2018) Chaotic binary crow search algorithm for solving 0–1 knapsack problem. Comput Eng Appl 54(10):178–184

    Google Scholar 

  15. Laabadi S, Naimi M, El Amri H, Achchab B (2020) A binary crow search algorithm for solving two-dimensional bin packing problem with fixed orientation. Proced Comput Sci 167:809–818

    Article  Google Scholar 

  16. Zhao SJ, Gao LF et al (2019) Improved CSA algorithm based on variable factor weighted learning and adjacent generation dimension cross strategy. Acta Electron Sin 47(1):40–48

    Google Scholar 

  17. Shi Z, Li Q, Zhang S et al (2017) Improved crow search algorithm with inertia weight factor and roulette wheel selection scheme. In: 2017 10th International Symposium on Computational Intelligence and Design (ISCID), pp 205–209

  18. Farid M, Hamdi A (2018) A modified crow search algorithm(MCSA) for solving economic load dispatch problem. Appl Soft Comput 10(71):51–65

    Google Scholar 

  19. Majhi SK, Sahoo M, Pradhan R (2019) Opp-ositional crow search algorithm with mutation operator for global optimization and application in designing FOPID controller. Evol Syst 7:1–26

    Google Scholar 

  20. Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl-Based Syst 96:120–133

    Article  Google Scholar 

  21. Qu LD, He DX (2018) A simplified sine and cosine algorithm: sine algorithm. Comput Appl Res 035(012):3694–3696

    Google Scholar 

  22. Wilcoxon F (1945) Individual comparisons by ranking methods. Biom Bull 1(6):80–83

    Article  Google Scholar 

  23. Garcia S, Molina D, Lozano M et al (2009) A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 special session on real parameter optimization. J Heuristics 15(6):617–644

    Article  MATH  Google Scholar 

  24. He Q, Wang L (2007) An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Eng Appl Artif Intell 20(1):89–99

    Article  Google Scholar 

  25. Hatamlou A, Mirjalili S et al (2016) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27(2):495–513

    Article  Google Scholar 

  26. Arora S, Singh S (2017) Node localization in wireless sensor networks using butterfly optimization algorithm. Arab J Sci Eng 42:3325–3335

    Article  Google Scholar 

  27. Deb K (1991) Optimal design of a welded beam via genetic algorithms. Aiaa J 29(11):2013–2015

    Article  Google Scholar 

  28. Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl Based Syst 89(11):228–249

    Article  Google Scholar 

  29. Zhou Y, Wang R, Luo Q (2016) Elite opposition-based flower pollination algorithm. Neurocomputing 188(5):294–310

    Article  Google Scholar 

  30. Gandomi AH, Yang XS, Alavi AH et al (2013) Bat algorithm for constrained optimization tasks. Neural Comput Appl 22(6):1239–1255

    Article  Google Scholar 

  31. Li YH, Liu S, Zhao QH (2018) Crow search algorithm based on Levy flight. Intell Comput Appl 008(003):21–25

    Google Scholar 

  32. Sadollah A, Bahreininejad A, Eskandar H et al (2012) Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems. Appl Soft Comput 21(5):2592–2612

    Article  Google Scholar 

  33. Gandomi AH, Yang XS, Alavi AH (2013) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput 29(2):245–245

    Article  Google Scholar 

  34. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39(3):459–471

    Article  MathSciNet  MATH  Google Scholar 

  35. Savsani P, Savsani V (2016) Passing vehicle search (PVS): A novel metaheuristic algorithm. Appl Math Model 40:3951–3978

    Article  Google Scholar 

  36. Yu-Jun Z (2015) Water wave optimization: a new nature-inspired metaheuristic. Comput Oper Res 55:1–11

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Grant No. 11961006) and Guangxi Science and Technology Program (Grant No. 2013ZD022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dengxu He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, Y., He, D. & Qu, L. A probabilistic simplified sine cosine crow search algorithm for global optimization problems. Engineering with Computers 39, 1823–1841 (2023). https://doi.org/10.1007/s00366-021-01578-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-021-01578-2

Keywords

Navigation