[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Coupled particle swarm optimization method with genetic algorithm for the static–dynamic performance of the magneto-electro-elastic nanosystem

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

As a first attempt, Fourier series expansion (FSE), particle swarm optimization (PSO), and genetic algorithm (GA) methods are coupled for analysis of the static–dynamic performance and propagated waves in the magneto-electro-elastic (MEE) nanoplate. The FSE method is presented for solving the motion equations of the MEE nanoplate. For increasing the performance of genetic algorithms for solving the problem, the particle swarm optimization technique is added as an operator of the GA. Accuracy, convergence, and applicability of the proposed mixed approach are shown in the results section. Also, we prove that for obtaining the convergence results of the PSO and GA, we should consider more than 16 iterations. Finally, it is shown that if designers consider the presented algorithm in their model, the results of phase velocity of the nanosystem will be increased by 27%. A useful suggestion is that there is a region the same as a trapezium in which there are no effects from magnetic and electric potential of the MEE face sheet on the phase velocity of the smart nanoplate, and the region will be bigger by increasing the wavenumber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Al-Furjan MSH, Dehini R, Paknahad M, Habibi M, Safarpour H (2021) On the nonlinear dynamics of the multi-scale hybrid nanocomposite-reinforced annular plate under hygro-thermal environment. Arch Civ Mech Eng 21(1):4. https://doi.org/10.1007/s43452-020-00151-w

    Article  Google Scholar 

  2. Al-Furjan M, Habibi M, won Jung D, Safarpour H, (2020) Vibrational characteristics of a higher-order laminated composite viscoelastic annular microplate via modified couple stress theory. Compos Struct. https://doi.org/10.1016/j.compstruct.2020.113152

    Article  Google Scholar 

  3. Al-Furjan M, Fereidouni M, Sedghiyan D, Habibi M, won Jung D, (2020) Three-dimensional frequency response of the CNT-Carbon-Fiber reinforced laminated circular/annular plates under initially stresses. Compos Struct. https://doi.org/10.1016/j.compstruct.2020.113146

    Article  Google Scholar 

  4. Al-Furjan MSH, Moghadam SA, Dehini R, Shan L, Habibi M, Safarpour H (2020) Vibration control of a smart shell reinforced by graphene nanoplatelets under external load: semi-numerical and finite element modeling. Thin-Walled Struct. https://doi.org/10.1016/j.tws.2020.107242

    Article  Google Scholar 

  5. Al-Furjan M, Dehini R, Khorami M, Habibi M, won Jung D, (2020) On the dynamics of the ultra-fast rotating cantilever orthotropic piezoelectric nanodisk based on nonlocal strain gradient theory. Compos Struct. https://doi.org/10.1016/j.compstruct.2020.112990

    Article  Google Scholar 

  6. Shariati A, Qaderi S, Ebrahimi F, Toghroli A (2020) On buckling characteristics of polymer composite plates reinforced with graphene platelets. Eng Comput. https://doi.org/10.1007/s00366-020-00992-2

    Article  Google Scholar 

  7. Ma L, Liu X, Moradi Z (2021) On the chaotic behavior of graphene-reinforced annular systems under harmonic excitation. Eng Comput. https://doi.org/10.1007/s00366-020-01210-9

    Article  Google Scholar 

  8. Zhao Y, Moradi Z, Davoudi M, Zhuang J (2021) Bending and stress responses of the hybrid axisymmetric system via state-space method and 3D-elasticity theory. Eng Comput. https://doi.org/10.1007/s00366-020-01242-1

    Article  Google Scholar 

  9. Huang X, Zhu Y, Vafaei P, Moradi Z, Davoudi M (2021) An iterative simulation algorithm for large oscillation of the applicable 2D-electrical system on a complex nonlinear substrate. Eng Comput. https://doi.org/10.1007/s00366-021-01320-y

    Article  Google Scholar 

  10. Shariati M, Mafipour MS, Mehrabi P, Shariati A, Toghroli A, Trung NT, Salih MN (2020) A novel approach to predict shear strength of tilted angle connectors using artificial intelligence techniques. Eng Comput. https://doi.org/10.1007/s00366-019-00930-x

    Article  Google Scholar 

  11. Shariati A, Hosseini SHS, Bayrami SS, Ebrahimi F, Toghroli A (2020) Effect of residual surface stress on parametrically excited nonlinear dynamics and instability of viscoelastic piezoelectric nanoelectromechanical resonators. Eng Comput. https://doi.org/10.1007/s00366-019-00916-9

    Article  Google Scholar 

  12. Shariati M, Mafipour MS, Ghahremani B, Azarhomayun F, Ahmadi M, Trung NT, Shariati A (2020) A novel hybrid extreme learning machine–grey wolf optimizer (ELM-GWO) model to predict compressive strength of concrete with partial replacements for cement. Eng Comput. https://doi.org/10.1007/s00366-020-01081-0

    Article  Google Scholar 

  13. Katebi J, Shoaei-parchin M, Shariati M, Trung NT (2020) Khorami M Developed comparative analysis of metaheuristic optimization algorithms for optimal active control of structures. Eng Comput 36:1539–1558. https://doi.org/10.1007/s00366-019-00780-7

    Article  Google Scholar 

  14. Sari PA, Suhatril M, Osman N, Mu’azu M, Dehghani H, Sedghi Y, Safa M, Hasanipanah M, Wakil K, Khorami M (2019) An intelligent based-model role to simulate the factor of safe slope by support vector regression. Eng Comput 35(4):1521–1531

    Google Scholar 

  15. Shariati A, Habibi M, Tounsi A, Safarpour H, Safa M (2020) Application of exact continuum size-dependent theory for stability and frequency analysis of a curved cantilevered microtubule by considering viscoelastic properties. Eng Comput. https://doi.org/10.1007/s00366-020-01024-9

    Article  Google Scholar 

  16. Shariati A, Hosseini SHS, Ebrahimi F, Toghroli A (2020) Nonlinear dynamics and vibration of reinforced piezoelectric scale-dependent plates as a class of nonlinear Mathieu-Hill systems: parametric excitation analysis. Eng Comput. https://doi.org/10.1007/s00366-020-00942-y

    Article  Google Scholar 

  17. Rouabhia A, Chikh A, Bousahla AA, Bourada F, Heireche H, Tounsi A, Benrahou KH, Tounsi A, Al-Zahrani MM (2020) Physical stability response of a SLGS resting on viscoelastic medium using nonlocal integral first-order theory. Steel Compos Struct 37(6):695

    Google Scholar 

  18. Refrafi S, Bousahla AA, Bouhadra A, Menasria A, Bourada F, Tounsi A, Bedia E, Mahmoud S, Benrahou KH, Tounsi A (2020) Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations. Comput Concrete 25(4):311–325. https://doi.org/10.12989/cac.2020.25.4.311

    Article  Google Scholar 

  19. Dong Q, Cui L (2021) Reliability analysis of a system with two-stage degradation using Wiener processes with piecewise linear drift. IMA J Manag Math 32(1):3–29. https://doi.org/10.1093/imaman/dpaa009

    Article  MathSciNet  Google Scholar 

  20. Niu Z, Zhang B, Wang J, Liu K, Chen Z, Yang K, Zhou Z, Fan Y, Zhang Y, Ji D (2020) The research on 220 GHz multicarrier high-speed communication system. China Commun 17(3):131–139

    Google Scholar 

  21. Zhang C, Wang H (2019) Swing vibration control of suspended structure using active rotary inertia driver system: parametric analysis and experimental verification. Appl Sci 9(15):3144. https://doi.org/10.3390/app9153144

    Article  Google Scholar 

  22. Zhang C, Wang H (2019) Robustness of the active rotary inertia driver system for structural swing vibration control subjected to multi-type hazard excitations. Appl Sci 9(20):4391

    Google Scholar 

  23. Lv Z, Song H (2019) Mobile internet of things under data physical fusion technology. IEEE Internet Things J 7(5):4616–4624

    Google Scholar 

  24. Li B-H, Liu Y, Zhang A-M, Wang W-H, Wan S (2020) A survey on blocking technology of entity resolution. J Comput Sci Technol 35(4):769–793

    Google Scholar 

  25. Lv X, Li N, Xu X, Yang Y (2020) Understanding the emergence and development of online travel agencies: a dynamic evaluation and simulation approach. Internet Res. https://doi.org/10.1108/intr-11-2019-0464

    Article  Google Scholar 

  26. Zuo C, Chen Q, Gu G, Feng S, Feng F, Li R, Shen G (2013) High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection. Opt Lasers Eng 51(8):953–960

    Google Scholar 

  27. Zhu J, Shi Q, Wu P, Sheng Z, Wang X (2018) Complexity analysis of prefabrication contractors’ dynamic price competition in mega projects with different competition strategies. Complexity. https://doi.org/10.1155/2018/5928235

    Article  Google Scholar 

  28. Lv Z, Kumar N (2020) Software defined solutions for sensors in 6G/IoE. Comput Commun 153:42–47. https://doi.org/10.1016/j.comcom.2020.01.060

    Article  Google Scholar 

  29. Tsai YH, Wang J, Chien WT, Wei CY, Wang X, Hsieh SH (2019) A BIM-based approach for predicting corrosion under insulation. Autom Constr 107:102923. https://doi.org/10.1016/j.autcon.2019.102923

    Article  Google Scholar 

  30. Zuo C, Chen Q, Tian L, Waller L, Asundi A (2015) Transport of intensity phase retrieval and computational imaging for partially coherent fields: the phase space perspective. Opt Lasers Eng 71:20–32

    Google Scholar 

  31. Zuo C, Sun J, Li J, Zhang J, Asundi A, Chen Q (2017) High-resolution transport-of-intensity quantitative phase microscopy with annular illumination. Sci Rep 7(1):1–22

    Google Scholar 

  32. Dai Z, Zhang L, Bolandi SY, Habibi M (2021) On the vibrations of the non-polynomial viscoelastic composite open-type shell under residual stresses. Compos Struct. https://doi.org/10.1016/j.compstruct.2021.113599

    Article  Google Scholar 

  33. Li X, Feng Y, Liu B, Yi D, Yang X, Zhang W, Bai P (2019) Influence of NbC particles on microstructure and mechanical properties of AlCoCrFeNi high-entropy alloy coatings prepared by laser cladding. J Alloy Compd 788:485–494. https://doi.org/10.1016/j.jallcom.2019.02.223

    Article  Google Scholar 

  34. Alam Z, Zhang C, Samali B (2020) Influence of seismic incident angle on response uncertainty and structural performance of tall asymmetric structure. Struct Des Tall Spec Build 29(12):e1750. https://doi.org/10.1002/tal.1750

    Article  Google Scholar 

  35. Li C, Sun L, Xu Z, Wu X, Liang T, Shi W (2020) Experimental investigation and error analysis of high precision FBG displacement sensor for structural health monitoring. Int J Struct Stab Dyn 20(06):2040011. https://doi.org/10.1142/S0219455420400118

    Article  Google Scholar 

  36. Sun L, Li C, Zhang C, Liang T, Zhao Z (2019) The strain transfer mechanism of fiber bragg grating sensor for extra large strain monitoring. Sensors 19(8):1851. https://doi.org/10.3390/s19081851

    Article  Google Scholar 

  37. Zhang C, Alam Z, Sun L, Su Z, Samali B (2019) Fibre Bragg grating sensor-based damage response monitoring of an asymmetric reinforced concrete shear wall structure subjected to progressive seismic loads. Struct Control Health Monit 26(3):e2307. https://doi.org/10.1002/stc.2307

    Article  Google Scholar 

  38. Liu H, Shen S, Oslub K, Habibi M, Safarpour H (2021) Amplitude motion and frequency simulation of a composite viscoelastic microsystem within modified couple stress elasticity. Eng Comput. https://doi.org/10.1007/s00366-021-01316-8

    Article  Google Scholar 

  39. Bai Y, Alzahrani B, Baharom S, Habibi M (2020) Semi-numerical simulation for vibrational responses of the viscoelastic imperfect annular system with honeycomb core under residual pressure. Eng Comput. https://doi.org/10.1007/s00366-020-01191-9

    Article  Google Scholar 

  40. Al-Furjan M, Mohammadgholiha M, Alarifi IM, Habibi M, Safarpour H (2020) On the phase velocity simulation of the multi curved viscoelastic system via an exact solution framework. Eng Comput. https://doi.org/10.1007/s00366-020-01152-2

    Article  Google Scholar 

  41. Shariati A, Ghabussi A, Habibi M, Safarpour H, Safarpour M, Tounsi A, Safa M (2020) Extremely large oscillation and nonlinear frequency of a multi-scale hybrid disk resting on nonlinear elastic foundation. Thin-Walled Struct 154:106840. https://doi.org/10.1016/j.tws.2020.106840

    Article  Google Scholar 

  42. Shariati A, Mohammad-Sedighi H, Żur KK, Habibi M, Safa M (2020) On the vibrations and stability of moving viscoelastic axially functionally graded nanobeams. Materials 13(7):1707

    Google Scholar 

  43. Safarpour M, Ebrahimi F, Habibi M, Safarpour H (2020) On the nonlinear dynamics of a multi-scale hybrid nanocomposite disk. Eng Comput. https://doi.org/10.1007/s00366-020-00949-5

    Article  Google Scholar 

  44. Habibi M, Safarpour M, Safarpour H (2020) Vibrational characteristics of a FG-GPLRC viscoelastic thick annular plate using fourth-order Runge-Kutta and GDQ methods. Mech Based Design Struct Mach. https://doi.org/10.1080/15397734.2020.1779086

    Article  Google Scholar 

  45. Shariati A, Habibi M, Tounsi A, Safarpour H, Safa M (2020) Application of exact continuum size-dependent theory for stability and frequency analysis of a curved cantilevered microtubule by considering viscoelastic properties. Eng Comput. https://doi.org/10.1007/s00366-020-01024-9

    Article  Google Scholar 

  46. Najaafi N, Jamali M, Habibi M, Sadeghi S, Dw Jung, Nabipour N (2020) Dynamic instability responses of the substructure living biological cells in the cytoplasm environment using stress-strain size-dependent theory. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2020.1751297

    Article  Google Scholar 

  47. Safarpour M, Ghabussi A, Ebrahimi F, Habibi M, Safarpour H (2020) Frequency characteristics of FG-GPLRC viscoelastic thick annular plate with the aid of GDQM. Thin-Walled Struct 150:106683

    Google Scholar 

  48. Oyarhossein MA, Aa A, Habibi M, Makkiabadi M, Daman M, Safarpour H, Jung DW (2020) Dynamic response of the nonlocal strain-stress gradient in laminated polymer composites microtubes. Sci Rep 10(1):1–19

    Google Scholar 

  49. Habibi M, Mohammadi A, Safarpour H, Ghadiri M (2019) Effect of porosity on buckling and vibrational characteristics of the imperfect GPLRC composite nanoshell. Mech Based Design Struct Mach. https://doi.org/10.1080/15397734.2019.1701490

    Article  Google Scholar 

  50. Moayedi H, Ebrahimi F, Habibi M, Safarpour H, Foong LK (2020) Application of nonlocal strain–stress gradient theory and GDQEM for thermo-vibration responses of a laminated composite nanoshell. Eng Comput. https://doi.org/10.1007/s00366-020-01002-1

    Article  Google Scholar 

  51. Fu X, Fortino G, Li W, Pace P, Yang Y (2019) WSNs-assisted opportunistic network for low-latency message forwarding in sparse settings. Futur Gener Comput Syst 91:223–237

    Google Scholar 

  52. Lv Z, Qiao L (2020) Deep belief network and linear perceptron based cognitive computing for collaborative robots. Appl Soft Comput. https://doi.org/10.1016/j.asoc.2020.106300

    Article  Google Scholar 

  53. Zhang H, Qiu Z, Cao J, Abdel-Aty M, Xiong L (2019) Event-triggered synchronization for neutral-type semi-Markovian neural networks with partial mode-dependent time-varying delays. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2019.2955287

    Article  Google Scholar 

  54. Ding L, Li S, Gao H, Liu Y-J, Huang L, Deng Z (2019) Adaptive neural network-based finite-time online optimal tracking control of the nonlinear system with dead zone. IEEE Trans Cybern. https://doi.org/10.1109/TCYB.2019.2939424

    Article  Google Scholar 

  55. Wang S, Zhang K, Bogaard T, van Beek L (2019) Physically based landslide prediction over a large region: coupling low-resolution hydrological modelling with high-resolution slope stability assessment. Geophys Res Abstracts 21:1–12

    Google Scholar 

  56. Guo Y, Mi H, Habibi M (2021) Electromechanical energy absorption, resonance frequency, and low-velocity impact analysis of the piezoelectric doubly curved system. Mech Syst Signal Process 157:107723

    Google Scholar 

  57. Jermsittiparsert K, Ghabussi A, Forooghi A, Shavalipour A, Habibi M, won Jung D, Safa M, (2020) Critical voltage, thermal buckling and frequency characteristics of a thermally affected GPL reinforced composite microdisk covered with piezoelectric actuator. Mech Based Design Struct Mach. https://doi.org/10.1080/15397734.2020.1748052

    Article  Google Scholar 

  58. Lori ES, Ebrahimi F, Supeni EEB, Habibi M, Safarpour H (2020) The critical voltage of a GPL-reinforced composite microdisk covered with piezoelectric layer. Eng Comput. https://doi.org/10.1007/s00366-020-01004-z

    Article  Google Scholar 

  59. Ebrahimi F, Supeni EEB, Habibi M, Safarpour H (2020) Frequency characteristics of a GPL-reinforced composite microdisk coupled with a piezoelectric layer. Eur Phys J Plus 135(2):144

    Google Scholar 

  60. Zare R, Najaafi N, Habibi M, Ebrahimi F, Safarpour H (2020) Influence of imperfection on the smart control frequency characteristics of a cylindrical sensor-actuator GPLRC cylindrical shell using a proportional-derivative smart controller. Smart Struct Syst 26(4):469–480

    Google Scholar 

  61. Shokrgozar A, Safarpour H, Habibi M (2020) Influence of system parameters on buckling and frequency analysis of a spinning cantilever cylindrical 3D shell coupled with piezoelectric actuator. Proc Inst Mech Eng C J Mech Eng Sci 234(2):512–529

    Google Scholar 

  62. Habibi M, Mohammadi A, Safarpour H, Shavalipour A, Ghadiri M (2019) Wave propagation analysis of the laminated cylindrical nanoshell coupled with a piezoelectric actuator. Mech Based Design Struct Mach. https://doi.org/10.1080/15397734.2019.1697932

    Article  Google Scholar 

  63. Habibi M, Taghdir A, Safarpour H (2019) Stability analysis of an electrically cylindrical nanoshell reinforced with graphene nanoplatelets. Compos B Eng 175:107125

    Google Scholar 

  64. Mahesh V, Harursampath D (2021) Large deflection analysis of functionally graded magneto-electro-elastic porous flat panels. Eng Comput. https://doi.org/10.1007/s00366-020-01270-x

    Article  Google Scholar 

  65. Karimiasl M, Ebrahimi F, Vinyas M (2019) Nonlinear vibration analysis of multiscale doubly curved piezoelectric composite shell in hygrothermal environment. J Intell Mater Syst Struct 30(10):1594–1609. https://doi.org/10.1177/1045389X19835956

    Article  Google Scholar 

  66. Safarpour H, Pourghader J, Habibi M (2019) Influence of spring-mass systems on frequency behavior and critical voltage of a high-speed rotating cantilever cylindrical three-dimensional shell coupled with piezoelectric actuator. J Vib Control 25(9):1543–1557

    MathSciNet  Google Scholar 

  67. Habibi M, Mohammadgholiha M, Safarpour H (2019) Wave propagation characteristics of the electrically GNP-reinforced nanocomposite cylindrical shell. J Braz Soc Mech Sci Eng 41(5):221

    Google Scholar 

  68. Pourjabari A, Hajilak ZE, Mohammadi A, Habibi M, Safarpour H (2019) Effect of porosity on free and forced vibration characteristics of the GPL reinforcement composite nanostructures. Comput Math Appl 77(10):2608–2626

    MathSciNet  MATH  Google Scholar 

  69. Habibi M, Hashemabadi D, Safarpour H (2019) Vibration analysis of a high-speed rotating GPLRC nanostructure coupled with a piezoelectric actuator. Eur Phys J Plus 134(6):307

    Google Scholar 

  70. Mohammadi A, Lashini H, Habibi M, Safarpour H (2019) Influence of viscoelastic foundation on dynamic behaviour of the double walled cylindrical inhomogeneous micro shell using MCST and with the aid of GDQM. J Solid Mech 11(2):440–453

    Google Scholar 

  71. Alimirzaei S, Mohammadimehr M, Tounsi A (2019) Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions. Struct Eng Mech 71(5):485–502. https://doi.org/10.12989/sem.2019.71.5.485

    Article  Google Scholar 

  72. Medani M, Benahmed A, Zidour M, Heireche H, Tounsi A, Bousahla AA, Tounsi A, Mahmoud S (2019) Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle. Steel Compos Struct 32(5):595–610. https://doi.org/10.12989/scs.2019.32.5.595

    Article  Google Scholar 

  73. Draoui A, Zidour M, Tounsi A, Adim B (2019) Static and dynamic behavior of nanotubes-reinforced sandwich plates using (FSDT). J Nano Res Trans Tech Publ 24(6):489. https://doi.org/10.4028/www.scientific.net/JNanoR.57.117

    Article  Google Scholar 

  74. Abualnour M, Chikh A, Hebali H, Kaci A, Tounsi A, Bousahla AA, Tounsi A (2019) Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory. Comput Concrete 24(6):489–498. https://doi.org/10.12989/cac.2019.24.6.489

    Article  Google Scholar 

  75. Belbachir N, Draich K, Bousahla AA, Bourada M, Tounsi A, Mohammadimehr M (2019) Bending analysis of anti-symmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings. Steel Compos Struct 33(1):81–92

    Google Scholar 

  76. Sahla M, Saidi H, Draiche K, Bousahla AA, Bourada F, Tounsi A (2019) Free vibration analysis of angle-ply laminated composite and soft core sandwich plates. Steel Compos Struct 33(5):663–679. https://doi.org/10.12989/scs.2019.33.5.663

    Article  Google Scholar 

  77. Draiche K, Bousahla AA, Tounsi A, Alwabli AS, Tounsi A, Mahmoud S (2019) Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory. Comput Concrete 24(4):369–378. https://doi.org/10.12989/cac.2019.24.4.369

    Article  Google Scholar 

  78. Boutaleb S, Benrahou KH, Bakora A, Algarni A, Bousahla AA, Tounsi A, Tounsi A, Mahmoud S (2019) Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT. Adv Nano Res 7(3):191. https://doi.org/10.12989/anr.2019.7.3.191

    Article  Google Scholar 

  79. Ebrahimi F, Hajilak ZE, Habibi M, Safarpour H (2019) Buckling and vibration characteristics of a carbon nanotube-reinforced spinning cantilever cylindrical 3D shell conveying viscous fluid flow and carrying spring-mass systems under various temperature distributions. Proc Inst Mech Eng C J Mech Eng Sci 233(13):4590–4605

    Google Scholar 

  80. Safarpour H, Hajilak ZE, Habibi M (2019) A size-dependent exact theory for thermal buckling, free and forced vibration analysis of temperature dependent FG multilayer GPLRC composite nanostructures restring on elastic foundation. Int J Mech Mater Des 15(3):569–583

    Google Scholar 

  81. Ebrahimi F, Habibi M, Safarpour H (2019) On modeling of wave propagation in a thermally affected GNP-reinforced imperfect nanocomposite shell. Eng Comput 35(4):1375–1389. https://doi.org/10.1007/s00366-018-0669-4

    Article  Google Scholar 

  82. Mohammadgholiha M, Shokrgozar A, Habibi M, Safarpour H (2019) Buckling and frequency analysis of the nonlocal strain–stress gradient shell reinforced with graphene nanoplatelets. J Vib Control 25(19–20):2627–2640

    MathSciNet  Google Scholar 

  83. Eringen AC (2002) Nonlocal continuum field theories. Springer Science & Business Media, New York

    MATH  Google Scholar 

  84. Ke L, Wang Y, Reddy J (2014) Thermo-electro-mechanical vibration of size-dependent piezoelectric cylindrical nanoshells under various boundary conditions. Compos Struct 116:626–636. https://doi.org/10.1016/j.compstruct.2014.05.048

    Article  Google Scholar 

  85. Wang Q (2002) On buckling of column structures with a pair of piezoelectric layers. Eng Struct 24(2):199–205. https://doi.org/10.1016/S0141-0296(01)00088-8

    Article  Google Scholar 

  86. Moayedi H, Habibi M, Safarpour H, Safarpour M, Foong L (2019) Buckling and frequency responses of a graphene nanoplatelet reinforced composite microdisk. Int J Appl Mech 11(10):1950102

    Google Scholar 

  87. Moayedi H, Aliakbarlou H, Jebeli M, Noormohammadiarani O, Habibi M, Safarpour H, Foong L (2020) Thermal buckling responses of a graphene reinforced composite micropanel structure. Int J Appl Mech 12(01):2050010

    Google Scholar 

  88. Ebrahimi F, Hashemabadi D, Habibi M, Safarpour H (2020) Thermal buckling and forced vibration characteristics of a porous GNP reinforced nanocomposite cylindrical shell. Microsyst Technol 26(2):461–473

    Google Scholar 

  89. Shokrgozar A, Ghabussi A, Ebrahimi F, Habibi M, Safarpour H (2020) Viscoelastic dynamics and static responses of a graphene nanoplatelets-reinforced composite cylindrical microshell. Mech Based Design Struct Mach. https://doi.org/10.1080/15397734.2020.1719509

    Article  Google Scholar 

  90. Al-Furjan MSH, Bolandi SY, Habibi M, Ebrahimi F, Chen G, Safarpour H (2021) Enhancing vibration performance of a spinning smart nanocomposite reinforced microstructure conveying fluid flow. Eng Comput. https://doi.org/10.1007/s00366-020-01255-w

    Article  Google Scholar 

  91. Al-Furjan MSH, Habibi M, Rahimi A, Chen G, Safarpour H, Safarpour M, Tounsi A (2020) Chaotic simulation of the multi-phase reinforced thermo-elastic disk using GDQM. Eng Comput. https://doi.org/10.1007/s00366-020-01144-2

    Article  Google Scholar 

  92. Chen S, Hassanzadeh-Aghdam M, Ansari R (2018) An analytical model for elastic modulus calculation of SiC whisker-reinforced hybrid metal matrix nanocomposite containing SiC nanoparticles. J Alloy Compd 767:632–641

    Google Scholar 

  93. Liu Y, Zhang Q, Xu M, Yuan H, Chen Y, Zhang J, Luo K, Zhang J, You B (2019) Novel and efficient synthesis of Ag-ZnO nanoparticles for the sunlight-induced photocatalytic degradation. Appl Surf Sci 476:632–640

    Google Scholar 

  94. Wang X, Wang J, Sun X, Wei S, Cui L, Yang W, Liu J (2018) Hierarchical coral-like NiMoS nanohybrids as highly efficient bifunctional electrocatalysts for overall urea electrolysis. Nano Res 11(2):988–996

    Google Scholar 

  95. Chen X, Wang D, Wang T, Yang Z, Zou X, Wang P, Luo W, Li Q, Liao L, Hu W (2019) Enhanced photoresponsivity of a GaAs nanowire metal-semiconductor-metal photodetector by adjusting the fermi level. ACS Appl Mater Interfaces 11(36):33188–33193

    Google Scholar 

  96. Li H, Tang J, Kang Y, Zhao H, Fang D, Fang X, Chen R, Wei Z (2018) Optical properties of quasi-type-II structure in GaAs/GaAsSb/GaAs coaxial single quantum-well nanowires. Appl Phys Lett 113(23):233104

    Google Scholar 

  97. Singh V, Gu N, Wang X (2011) A theoretical framework of a BIM-based multi-disciplinary collaboration platform. Autom Constr 20(2):134–144

    Google Scholar 

  98. Ren J, Zhang C, Hao Q (2020) A theoretical method to evaluate honeynet potency. Futur Gener Comput Syst 116:76–85

    Google Scholar 

  99. Zhang C, Wang H (2020) Swing vibration control of suspended structures using the Active Rotary Inertia Driver system: theoretical modeling and experimental verification. Struct Control Health Monit 27(6):e2543

    Google Scholar 

  100. Li A, Spano D, Krivochiza J, Domouchtsidis S, Tsinos CG, Masouros C, Chatzinotas S, Li Y, Vucetic B, Ottersten B (2020) A tutorial on interference exploitation via symbol-level precoding: overview, state-of-the-art and future directions. IEEE Commun Surv Tutorials 22(2):796–839. https://doi.org/10.1109/COMST.2020.2980570

    Article  Google Scholar 

  101. Sun L, Li C, Zhang C, Su Z, Chen C (2018) Early monitoring of rebar corrosion evolution based on FBG sensor. Int J Struct Stab Dyn 18(08):1840001. https://doi.org/10.1142/S0219455418400011

    Article  Google Scholar 

  102. Khdeir A (1988) Free vibration and buckling of symmetric cross-ply laminated plates by an exact method. J Sound Vib 126(3):447–461. https://doi.org/10.1016/0022-460X(88)90223-4

    Article  Google Scholar 

  103. Thinh TI, Nguyen MC, Ninh DG (2014) Dynamic stiffness formulation for vibration analysis of thick composite plates resting on non-homogenous foundations. Compos Struct 108:684–695. https://doi.org/10.1016/j.compstruct.2013.10.022

    Article  Google Scholar 

  104. Zenggang X, Zhiwen T, Xiaowen C, Xue-min Z, Kaibin Z, Conghuan Y (2019) Research on image retrieval algorithm based on combination of color and shape features. J Signal Process Syst. https://doi.org/10.1007/s11265-019-01508-y

    Article  Google Scholar 

  105. Mi C, Cao L, Zhang Z, Feng Y, Yao L, Wu Y (2020) A port container code recognition algorithm under natural conditions. J Coast Res 103(SI):822–829

    Google Scholar 

  106. Liu J, Wu C, Wu G, Wang X (2015) A novel differential search algorithm and applications for structure design. Appl Math Comput 268:246–269

    MATH  Google Scholar 

  107. Chen Y, Zheng W, Li W, Huang Y (2021) Large group activity security risk assessment and risk early warning based on random forest algorithm. Pattern Recognit Lett. https://doi.org/10.1016/j.patrec.2021.01.008

    Article  Google Scholar 

  108. Kennedy J, Eberhart R (1995) Particle swarms optimization. In: IEEE international conference on neural networks, vol 4

  109. Lv Zhihan, Qiao Liang (2020) Analysis of healthcare big data. Future Gener Comput Syst 109:103–110. https://doi.org/10.1016/j.future.2020.03.039

    Article  Google Scholar 

  110. Lv Z, Xiu W (2019) Interaction of edge-cloud computing based on SDN and NFV for next generation IoT. IEEE Internet Things J 7(7):5706–5712. https://doi.org/10.1109/JIOT.2019.2942719

    Article  Google Scholar 

  111. Cao B, Wang X, Zhang W, Song H, Lv Z (2020) A many-objective optimization model of industrial internet of things based on private blockchain. IEEE Network 34(5):78–83. https://doi.org/10.1109/MNET.011.1900536

    Article  Google Scholar 

  112. Cao B, Zhao J, Gu Y, Ling Y, Ma X (2020) Applying graph-based differential grouping for multiobjective large-scale optimization. Swarm Evol Comput 53:100626. https://doi.org/10.1016/j.swevo.2019.100626

    Article  Google Scholar 

  113. Cao B, Fan S, Zhao J, Yang P, Muhammad K, Tanveer M (2020) Quantum-enhanced multiobjective large-scale optimization via parallelism. Swarm Evol Comput 57:100697. https://doi.org/10.1016/j.swevo.2020.100697

    Article  Google Scholar 

  114. Bai B, Guo Z, Zhou C, Zhang W, Zhang J (2021) Application of adaptive reliability importance sampling-based extended domain PSO on single mode failure in reliability engineering. Inf Sci 546:42–59. https://doi.org/10.1016/j.ins.2020.07.069

    Article  MathSciNet  MATH  Google Scholar 

  115. Zhou Y, Tian L, Zhu C, Jin x, Sun Y (2020) Video coding optimization for virtual reality 360-degree source. IEEE J Sel Top Sign Proces 14:118–129. https://doi.org/10.1109/JSTSP.2019.2957952

  116. Bo W, Fang ZB, Wei LX, Cheng ZF, Hua ZX (2021) Malicious URLs detection based on a novel optimization algorithm. IEICE Trans Inf Syst 104(4):513–516. https://doi.org/10.1587/transinf.2020EDL8147

    Article  Google Scholar 

  117. Yin F, Xue X, Zhang C, Zhang K, Han J, Liu B, Wang J, Yao J (2021) Multifidelity genetic transfer: an efficient framework for production optimization. SPE J. https://doi.org/10.2118/205013-PA

    Article  Google Scholar 

  118. Xue X, Zhang K, Tan KC, Feng L, Wang J, Chen G, Zhao X, Zhang L, Yao J (2020) Affine transformation-enhanced multifactorial optimization for heterogeneous problems. IEEE Trans Cybern. https://doi.org/10.1109/TCYB.2020.3036393

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Jiao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, J., Ghoreishi, Sm., Moradi, Z. et al. Coupled particle swarm optimization method with genetic algorithm for the static–dynamic performance of the magneto-electro-elastic nanosystem. Engineering with Computers 38 (Suppl 3), 2499–2513 (2022). https://doi.org/10.1007/s00366-021-01391-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-021-01391-x

Keywords

Navigation