[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A new iterative method with \(\rho \)-Laplace transform for solving fractional differential equations with Caputo generalized fractional derivative

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this paper, the new iterative method with \(\rho \)-Laplace transform of getting the approximate solution of fractional differential equations was proposed with Caputo generalized fractional derivative. The effect of the various value of order \(\alpha \) and parameter \(\rho \) in the solution of certain well known fractional differential equation with Caputo generalized fractional derivative. Applications to the certain fractional differential equation in various systems demonstrate that the proposed method is more reliable and powerful. The graphical representations of the approximate analytic solutions of the fractional differential equations described by the Caputo generalized fractional derivative were provided and the nature of the achieved solution in terms of plots for distinct arbitrary order is captured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Morales-Delgado VF, Gómez-Aguilar JF, Taneco-Hernández M, Escobar-Jiménez RF (2018) A novel fractional derivative with variable order and constant order applied to mass-spring-damper system. Eur Phys J Plus 133:78. https://doi.org/10.1140/epjp/i2018-11905-4

    Article  Google Scholar 

  2. Hristov J (2019) A transient flow of a non-newtonian fluid modelled by a mixed time-space derivative: an improved integral-balance approach. In: Taş K, Baleanu D, Machado J (eds) Mathematical methods in engineering. Nonlinear systems and complexity, vol 24. Springer, Cham, pp 153–174. https://doi.org/10.1007/978-3-319-90972-1_11

    Chapter  Google Scholar 

  3. Sheikh N, Ali F, Saqib M, Khan I, Jan S, Alshomrani A, Alghamdi M (2017) A comaparision and analysis of Atangana-Baleanu and Caputo-Fabrizio derivatives for generalised Casson fluid model with heat generation and chemical reaction. Res Phys 7:789–800. https://doi.org/10.1016/j.rinp.2017.01.025

    Article  Google Scholar 

  4. Iyiola O, Zaman F (2014) A fractional difussion equation model for cancer tumor. Am Inst Phys 4:107121. https://doi.org/10.1063/1.4898331

    Article  Google Scholar 

  5. Escamilla AC, Gómez-Anguilar JF, Baleanu D, Cordova-Fraga T, Escobar- Jiménez RF, Olivares-Peregrino VH, Quarishi MMA, Bateman-Fesbach Caldirola-Kanai (2017) Oscillators with New fracional differentiation. Entropy 19:6289–6303. https://doi.org/10.3390/e17096289

    Article  Google Scholar 

  6. Hristov J (2017) Derivatives with non-singular kernels from the caputo-fabrizio definition and beyond: appraising analysis with emphasis on diffusion models. In: Bhalekar S (ed) Frontiers in fractional calculus, vol 1. Current developments in mathematical sciences. Bentham Science Publishers, Sharjah, pp 269–341. https://doi.org/10.2174/9781681085999118010013

    Chapter  Google Scholar 

  7. Podlubny I (1998) An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Fract Diff Equ 198:1–340

    Google Scholar 

  8. Khan N, Ayaz M, Jin L, Yildirim A (2011) On approximate solutions for the time-fractional reaction-diffusion equation of Fisher type. Int J Phys Sci 6:2483–2496. https://doi.org/10.5897/IJPS11.181

    Article  Google Scholar 

  9. El-Sayed AMA, Rida SZ, Arafa AAM (2019) Exact solutions of fractional-order biological populations model. Commun Theor Phys 52(6):992–996. https://doi.org/10.1088/0253-6102/52/6/04

    Article  MathSciNet  MATH  Google Scholar 

  10. Sjöberg P, Lötstedt P, Elf J (2009) Fokker-Planck approximation of the master equation in molecular biology. Comput Vis Sci 12(1):37–50. https://doi.org/10.1007/s00791-006-0045-6

    Article  MathSciNet  Google Scholar 

  11. Farm L, Lötstednt, P, Sjöberg P (2004) Adaptive, conservative solution of the Fokker–Planck equation in molecular biology. Computer Science

  12. Santos MA, Gomez IS (2018) A Fokker-Planck equation for non-singular kernel operators. J Stat Mech Theory Exp 2018:123205. https://doi.org/10.1088/1742-5468/aae5a2

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhou L, Shen J (2017) Signal transmission biological reaction-difussion system by using synchronization. Front Comput Neurosci. https://doi.org/10.3389/fncom.2017.00092

    Article  Google Scholar 

  14. Lu D, Yue C, Arshad M (2017) Travelling wave solutions of space time fractional generalized fifth order Kdv equation. Adv Math Phys 2017:6743276. https://doi.org/10.1155/2017/6743276

    Article  MATH  Google Scholar 

  15. Gómez-Aguilar JF, Yepez-Martinez H, Ramon C, Orduña I, Jiménez RFF, Peregrino V (2015) Modelling of a mass-spring damper system by Fractional derivatives with and without singular kernel. Entropy 17(9):6289–6303. https://doi.org/10.3390/e17096289

    Article  MathSciNet  MATH  Google Scholar 

  16. Prajapati J, Kachhia K, Kosta S (2016) Fractional Calculus approach to study temprature distribution within a spinning satellite. Alexandria Eng J 55(3):2345–2350. https://doi.org/10.1016/j.aej.2016.05.00

    Article  Google Scholar 

  17. Kachhia K, Atangana A Electromagnetic waves described by a fractional derivative of variable and constant order with non singular kernel. Discrete Continuous Dyn Syst Ser S. https://doi.org/10.3934/dcdss.2020172 (to be appear)

  18. Caputo M (1969) Elasticity e Dissipzione. ZaniChelli Bologana

  19. Caputo M, Fabrizio M (2015) A new definition of fractional derivative without singular kernel. Progress Fract Diff Appl 1(2):73–85. https://doi.org/10.12789/pfda/010201

    Article  Google Scholar 

  20. Atangana A, Baleanu D (2016) New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Therm Sci 20(2):763–769. https://doi.org/10.2298/TSCI160111018A

    Article  Google Scholar 

  21. Atangana A, Koca I (2017) New direction in fractional differentiation. Math Nat Sci 1:18–25. https://doi.org/10.22436/mns.01.01.02

    Article  Google Scholar 

  22. Atangana A (2007) Fractal-fractional differentiation and integration: connecting fractal calculus and fractional calculus to predict complex system. Chaos Solit Fract 102:396–406. https://doi.org/10.1016/j.chaos.2017.04.027

    Article  MathSciNet  MATH  Google Scholar 

  23. Kachhia K (2020) Comparative study of fractional Fokker-Planck equations with various fractional derivatie operators. Discrete Continuous Dyn Syst Ser S 13(3):741–754. https://doi.org/10.3934/dcdss.2020041

    Article  MathSciNet  MATH  Google Scholar 

  24. Prakash A, Kumar M (2018) A new iterative technique for a fractional model of nonlinear Zakherov-Kunetsov equations via Sumudu transform. Appl Math Comput 334:30–40. https://doi.org/10.1016/j.amc.2018.03.097

    Article  MathSciNet  MATH  Google Scholar 

  25. Singh J, Kumar D, Baleanu D (2020) A new analysis of fractional fish farm model associated with Mittag-Leffler type kernel. Int J Biomath 13(2):2050010. https://doi.org/10.1142/S1793524520500102

    Article  MathSciNet  MATH  Google Scholar 

  26. Solís-Pérez JE, Gómez-Aguilar JF, Atangana A (2018) Novel numerical method for solving variable-order fractional differential equation with power, exponential and Mittag-Leffer. Chaos Solitons Fract 114:175–185. https://doi.org/10.1016/j.chaos.2018.06.032

    Article  MATH  Google Scholar 

  27. Atangana A, Owolabi K (2018) New numerical approach for fractional differential equations. Math Model Nat Phenomena 13(1):3. https://doi.org/10.1051/mmnp/2018010

    Article  MathSciNet  MATH  Google Scholar 

  28. Daftardar-Gejji V, Jafari H (2006) An iterative method for solving non-linear fractional equations. J Math Anal Appl 316(2):735–763. https://doi.org/10.1016/j.jmaa.2005.05.009

    Article  MATH  Google Scholar 

  29. Katugampola U (2020) New approach to generalized fractional integral. Appl Math Comput 218(3):860–865. https://doi.org/10.1016/j.amc.2011.03.062

    Article  MathSciNet  MATH  Google Scholar 

  30. Sene N (2019) Analytical solutions and numerical schemes of certain generalized fractional diffusion models. Eur Phys J Plus 134:199. https://doi.org/10.1140/epjp/i2019-12531-4

    Article  Google Scholar 

  31. Sene N, Gómez-Aguilar J (2019) Analytical solutions of electrical circuits considering certain generalized fractional derivative. Eur Phys J Plus 134:260. https://doi.org/10.1140/epjp/i2019-12618-x

    Article  Google Scholar 

  32. Sene N, Gómez-Aguilar J (2019) Fractional mass-spring damper system described by generalized fractional derivatives. Fract Fract. https://doi.org/10.3390/fractalfract3030039

    Article  Google Scholar 

  33. Kachhia KB, Prajapati JC (2020) Generalized iterative method for the solution of linear and nonlinear fractional differential equations with composite fractional derivative operator. AIMS Math 5(4):2888–2898. https://doi.org/10.3934/math.2020186

    Article  MathSciNet  MATH  Google Scholar 

  34. Sene N, Fall A (2019) Homotopy perturbation \(\rho \)-Laplace transform method and its application to the fractional diffusion-equation and the fractional diffusion-reaction equation. Frac Fract (3)2:14. https://doi.org/10.3390/fractalfract3020014

  35. Fahd J, Abdeljawad T (2018) A modified Laplace transform for certain generalized fractional operators. Res Nonlinear Anal 2:88–98

    Google Scholar 

  36. Wiman A (1905) Uber de fundamental satz in der theorie der funktionen \(E_{\alpha }(x)\). Acta Mat 29:191–201

    Article  Google Scholar 

  37. Singh J, Jassim HK, Kumar D (2020) An efficient computational technique for local fractional Fokker Planck equation. Phys A 555(1):124525. https://doi.org/10.1016/j.physa.2020.124525

    Article  MathSciNet  MATH  Google Scholar 

  38. Veeresha P, Prakasha DG, Singh J et al (2020) Analytical approach for fractional extended Fisher-Kolmogorov equation with Mittag-Leffler kernel. Adv Diff Equ 1:1–17. https://doi.org/10.1186/s13662-020-02617-w

    Article  MathSciNet  MATH  Google Scholar 

  39. Saad KM, Gómez-Aguilar J, Almadiy A (2020) A fractional numerical study on a chronic hepatitis C virus infection model with immune response. Chaos Solitons Fract 139:110062. https://doi.org/10.1016/j.chaos.2020.110062

    Article  MathSciNet  MATH  Google Scholar 

  40. Bhangale N, Kachhia K Fractional electromagnetic waves in plasma and dielectric media with Caputo generalized fractional derivative. Revista Mexicana de Física (to be appeared)

  41. Saad KM, Al-Shareef EH, Mohamed MS et al (2017) Optimal q-homotopy analysis method for time-space fractional gas dynamics equation. Eur Phys J Plus. https://doi.org/10.1140/epjp/i2017-11303-6

    Article  Google Scholar 

  42. Saad KM, Iyiola OS, Agarwal P (2018) An effective homotopy analysis method to solve the cubic isothermal auto-catalytic chemical system. AIMS Math 3(1):183–194. https://doi.org/10.3934/Math.2018.1.183

    Article  MATH  Google Scholar 

  43. Kumar D, Singh J, Baleanu D (2019) On the analysis of vibration equation involving a fractional derivative with Mittag-Leffler law. Math Methods Appl Sci 43(1):443–457. https://doi.org/10.1002/mma.5903

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

José Francisco Gómez Aguilar acknowledges the support provided by CONACyT: cátedras CONACyT para jóvenes investigadores 2014 and SNI-CONACyT.

Funding

No funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Gómez-Aguilar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhangale, N., Kachhia, K.B. & Gómez-Aguilar, J.F. A new iterative method with \(\rho \)-Laplace transform for solving fractional differential equations with Caputo generalized fractional derivative. Engineering with Computers 38, 2125–2138 (2022). https://doi.org/10.1007/s00366-020-01202-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-020-01202-9

Keywords

Navigation